

�

Abstract— Electronic Health Record (EHR) is a distributed

system that results from the cooperation of several

heterogeneous and autonomous subsystems. It improves health

care by enabling access to prior diagnostic information to assist

in health decisions. We focus on the image and imaging report

visualization component that needs to interoperate with several

other systems to enable healthcare professionals visualize a

patient’s imaging record. We propose and describe an

environment that has been built and used to facilitate the

development of the viewer component. This environment has

also been used to test and verify the interoperability of the

viewer component with other EHR components in accordance

with the Integrating the Healthcare Enterprise (IHE) technical

framework. It has also been used to demonstrate

functionalities, to educate end users, and to train maintenance

and test engineers. Moreover, it has been used for acceptance

testing as part of an EHR deployment project. We also discuss

the challenges we faced in constructing the testing data and

describe the software developed to automatically populate the

test environment with valid data.

I. INTRODUCTION

Interoperability testing is crucial to Electronic Health
Record (EHR). EHR improves the quality of care by enabling
access to prior diagnostic information in order to assist in
health decisions. Information includes observations,
laboratory results, imaging reports, drugs, discharge
summaries and allergies. This access is achieved
independently from the institution where the information was
initially gathered. EHR also improves productivity and
reduces duplication of tests. EHR is not a single system that
can be provided by a single manufacturer. It is a system that
results from the cooperation of several heterogeneous
distributed systems. Interoperability is therefore essential.
Achieving interoperability requires, in addition to using
communication standards, defining requirements and
conducting thorough testing to eliminate and reduce
technical, semantic, functional, quality and logistical
impediments [1].

In this paper, we are interested in the EHR component
that is responsible for visualizing medical images and
imaging diagnostic reports. This component needs to interact
with several other EHR components to enable the user search
a specific patient’s history, display specific patient’s
documents, visualize and process patient’s images while
ensuring information security and confidentiality. We briefly
describe the Cross-Enterprise Document Sharing Integration
Profile (XDS) that lays the infrastructure for image sharing

R. Noumeir is with Dept. of Electrical Engineering, Ecole de technologie

supérieure (ETS), Montreal, Canada, e-mail:rita.noumeir@etsmtl.ca

J. Rose., is with Softmedical, Montreal, Canada, e-mail:

jose.rose@softmedical.com

between multiple care delivery systems [2]. This architecture
allows sharing of patient’s information in the form of
documents. Medical images, important information of the
patient health record, are shared with XDS. XDS has been
adopted as a standard to share documents in many countries,
including Canada and the United States; several projects are
being deployed around the globe [3-5].

We focus our interest on one main component of this
architecture: the image viewer; it is used by healthcare
professionals to access patient’s record, and view imaging
reports and medical images. The viewer needs to successfully
interact with all other components to support the healthcare
process. After describing the process flow of the image and
report viewer, we concentrate on the testing environment and
testing data that have been created to test the interoperability
of the EHR image viewer.

The EHR image viewer interacts with several other EHR
components using different standards: the Digital Imaging
and Communications in Medicine (DICOM) standard [6]
which defines communication protocols and encoding of
images, imaging reports and other imaging information; the
Health Level Seven (HL7) which specifies the exchange and
encoding of patient’s information in several functional areas,
such as patient registration, and delivery of diagnostic
observations; standards initially developed for non-medical
domains such as ebXML that have been adapted to the
medical domain by the Integrating the Healthcare Enterprise
(IHE) [7]. To develop and test EHR image viewer, all other
peers are needed. However, these peers are usually provided
by different vendors. We therefore propose and describe an
environment that is based on open-source software to
simulate other peers. We also describe how testing data has
been created and published to testing peers. Creating the
testing data is not an easy task. Data known to different peers
need to be related to support the testing of a specific
healthcare process. After describing how the environment is
assembled, we present how testing data has been constructed
and published to the various peers.

II. ARCHITECTURE

A. Document sharing

The XDS architecture enables patient information,
encoded as a document, to be shared between multiple care
systems. A central registry maintains metadata describing
published documents. It does not store the document, but
answers queries about documents meeting specific criteria.
The metadata includes information about the location from
which documents may be retrieved. Documents are stored in
a repository. Systems that generate patient’s care information,
such as radiology reporting systems, publish information as
documents to the registry. Systems interested in accessing the

Testing of Electronic Healthcare Record Images and Reports Viewer

Rita Noumeir, Member, IEEE, Jose Rose

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 4767

patient’s record query the registry for documents using query
keys such as patient`s name or date of study. In the response
to a query, the registry includes a reference to the document
address enabling the consumer system to retrieve the
document from its repository. The communication with the
Registry/ Repository is done using the ebXML standard over
SOAP. Fig. 1 shows the Viewer in the role of a document
consumer; it interacts with the registry and repository in
accordance to the IT Infrastructure (ITI) XDS integration
profile [2, 7].

B. Patient Identification

The architecture is based on normalized patient’s
identifiers (ID): there is a single assigning authority (a Patient
Identity Source Actor) that provides a unique ID for each
patient. The Viewer component uses the normalized patient’s
identifier to communicate with the registry. This is done by
querying a Patient Demographics Query (PDQ) Supplier to
retrieve the normalized patient ID using demographic
information, as shown in Fig.1. For example, the PDQ query
is accomplished using a combination of patient’s name, birth
date, and /or ID as known to a specific institution. The query
results consist of a list of patients whose demographic match
the query. Each returned patient record contains also the
normalized patient’s ID.

C. Security

To achieve a minimum level of security the viewer
implements the IHE Audit Trail and Node Authentication
(ATNA) profile. This profile specifies the content of audit
logs for all activities or transfers related to personal health
information. Audits are communicated using the Syslog
communication protocol to an Audit Repository (Fig 1).

D. Sharing of imaging information

To share a set of images, a manifest encoded as a DICOM
key Object Selection (KOS), that contains references to those
images is published. With this solution, the KOS is stored in
the Document repository and the image are archived in the
digital image Archive system that keeps the referenced
images available to be retrieved as shown in Fig 1. Medical
images are encoded in conformance with the DICOM
standard. The manifest is another type of DICOM object; it
contains the Universal Identifiers (UID) of the images that
are referenced. Fig. 1 shows that the Viewer interacts with
the image archive in order to retrieve the images.

III. IMAGE VIEWER SYSTEM

A. Viewer process flow

The image visualization application, or the viewer, is a
system that is interested in retrieving and rendering published
images and reports. The viewer process flow is depicted in
Fig. 2. This is a complex system that has to interoperate with
all other systems part of the XDS architecture. As a PDQ
consumer, it starts by querying the PDQ supplier for patients
whose demographic information matches the query criteria
such as the name, and/or the date of birth, and/ or the
patient`s ID. The PDQ Supplier returns a list of patients from
which the user chooses one patient. Fig. 2 shows one audit
message sent by the Viewer to the Audit Repository to
inform it about the PDQ query that took place. The user
chooses one patient and decides to query for published
documents for that patient.

A query is then sent to the XDS Registry using the
universal patient’s ID that is retrieved from the PDQ
response. The XDS Registry returns a list of documents for
that specific patient. The Viewer sends an Audit message to
the Audit Repository to inform it about the XDS query. This
audit message is not shown in Fig. 2. From the list of
documents, the user chooses one to be retrieved. If the
selected document is an imaging report, it is retrieved from
the XDS Repository and visualized. An imaging report is
encoded as an HL7 Clinical Document Architecture (CDA);
it is in XML format that can be transformed to be directly
rendered in a browser. If the selected Document is an image
manifest, it is retrieved from the XDS repository and
decoded. The manifest content is a list of imaging series,
where each series has a modality type and contains a certain
number of images. The images themselves are not part of the
manifest. Only their UID are encoded with the DICOM
Application Entity from where they can be retrieved. When a
document is retrieved from the XDS Repository, the viewer
sends an audit messages to the Audit Repository (not shown
in Fig. 2 for clarity). The user may select one or multiple
series to be visualized. The images are retrieved using either
DICOM C-Retrieve or Web Access to DICOM Persistent
Objects (WADO) transactions.

B. Authentication and access control

 The viewer consists of two components: a web client and
a server. The web client runs in a browser; it enables the user
to enter query parameters and select an item from a query
result list; it also displays the images and reports. The server
is responsible for the communication with all the peers; it
runs behind a firewall. Between the client and the server,
there is a reverse proxy (Fig. 3) whose main responsibility is
to perform user’s authentication: it intercepts the request to
the viewer server; if the user is not already authenticated, it
requests the user to enter username and password; the proxy
authenticates the user by communicating with an
authentication service; after the user is successfully
authenticated, the request is forwarded to the viewer server;
the request header is modified by injecting into it the user
information including the user’s role; the viewer server reads
the user’s injected information and uses it to enforce role

Figure 1. Viewer component and peers

XDS Document

Repository

XDS Document

Registry

DI-r Viewer

Server

Digital Image

Archive

PIX / PDQ

Manager

Identity &

Access

Management

ATNA Audit

Repository

4768

based access control; the server’s response is sent back to the
proxy who forwards it to the viewer client.

IV. DEVELOPMENT AND TESTING ENVIRONMENT

A. Software components and architecture

In order to test the viewer during development or during
integration testing, an environment that simulates all
communication peers is developed. The testing environment
comprises: a PDQ supplier and PIX manager that are
provided by the OpenPIXPDQ software [8]; an XDS registry
and an XDS repository that are provided by the OpenXDS
software [9]; an audit log repository provide by OpenATNA
software [10]; a DICOM image archive provided by DCMTK
software [11]; a WADO server provided by XDS-I Testkit
software [12]; and a reverse proxy provided by the open
source Web Scarab software [13].

These components have been configured to function as
follows: the WADO server retrieves the requested images
and reports from the DICOM image archive using a DICOM
C-Retrieve transaction. The PIX manager forwards a Patient
Identity Feed Transaction to the XDS registry when a patient
is registered with a normalized ID. The XDS repository
forwards a Document Register transaction to the XDS
registry when it receives a Document through a Provide and
Register transaction. The reverse proxy intercepts POST http
requests from the web client and injects the user’s identity
into the http header before forwarding the request to the
viewer server.

B. Testing data creation and consistency challenge

The major difficulty is the testing data consistency: 1-
Each patient needs to be registered with the PDQ supplier
with at least one ID that is not normalized in addition to the
normalized one. This is to ensure that the exchange of

information between the viewer and the PDQ supplier, as
depicted in fig 2, can be done using the non-normalized
patient`s ID, where the query response will always include
the normalized ID. 2- For each patient, a KOS or CDA needs
to be published to the XDS registry/repository. This is to
ensure that the exchange of information between the viewer
and the XDS registry returns at least one document.3- the
images that are referenced inside the KOS need to be
available for retrieve from the DICOM archive. This is to
ensure that viewer can retrieve the images from the archive.
4- The AE title encoded inside the KOS needs to point to the
DICOM archive. This is to ensure that the viewer can map
the AE title decoded from the KOS to the address of the
image archive peer.

To guarantee the consistency of data between the various
peers, we have automated the publishing process by
developing an auto-publisher software application. Based on
the simple publisher from [12, 14] and on Open Health
Framework (OHT) [15], the software creates registry
metadata using either the KOS or the CDA, registers the
patient with the PDQ supplier and publishes the documents to
the XDS registry. In order to run various test scenarios, a
single patient needs to be registered with multiple IDs, and
multiple KOS or CDA documents are published for a specific
patient. Therefore, the group of transactions to register a
patient may be repeated; likewise, the group of transactions
to publish documents for a single patient may also be
repeated. For that reason, the auto-publisher prepares in
memory a structure of the patients’ data and documents
before starting to populate the peers. The data flow diagram
of the auto-publisher is depicted in Fig. 4. The input to the
auto-publisher is an external XML configuration file that
describes the data to be published, such as patients and their
documents. When reading a KOS, the publisher generates an
XDS document entry matching the KOS DICOM header.
Likewise, the auto-publisher uses the information in the CDA
header to generate a document entry, when there is no KOS
for that patient. The KOS and the CDA are loaded into their
respective document entries and added to the submission set.
The auto-publisher registers a patient in PIX manager using
the patient information from the KOS, or from the CDA if
KOS is not available. The PIX manager is in charge of
forwarding the patient register transaction to the XDS patient
registry. At end, the auto-publisher publishes the documents

Viewer Web

Client

Viewer Server P

r

o

x

y
Authentication

Service

Figure 3. Viewer components and reverse Proxy

:XDS Registry :XDS Repository:PDQ Supplier :Viewer :Image Archive :Audit Repository

PDQ Query

XDS Query

Audit Log

Retrieve KOS

Decode KOS Retrieve images

Figure 2. Viewer process flow

4769

to the Document repository that forwards the transaction to
the Document registry.

C. Benefits and usage scenarios

The EHR viewer holds no patient’s information; it
depends on all other peers to operate. Therefore the testing
environment is essential not only in the development process
of the viewer but also for testing, demonstration and training.
Although IHE provides testing for specific integration
profiles such as PDQ or XDS, the proposed environment
complements IHE testing by allowing quality impediments to
be tested [1]. By populating the environment with large
image sets, the viewer can be tested for memory
consumption, timeliness, reliability and availability.
Moreover, by simulating faulty situations, such as the non-
availability of specific peers, the quality of service and the
security impediments [1] can be assessed and accounted for.
Moreover, during the lifecycle of the viewer, regression tests
are conducted using all data deployed in the test environment.
The data covers all possible information objects that can be
encountered in reality such as many image types, reports, and
presentation states. Furthermore, because the viewer holds no
data, its functionality cannot be demonstrated without its
peers. The testing environment is populated with de-
identified data, so it is used for demonstration and for
training.

V. CONCLUSION

We have described how the EHR images and reports

visualization component interacts with various peers. In

order to enable its development and interoperability testing,

we presented how we assembled an environment that

simulates the various peers. The major challenge

encountered was the creation of testing data. Not only

testing data needed to be carefully designed to enable

various testing scenarios, it needed to be synchronized

between various information objects and multiple systems.

To overcome this challenge we have developed automatic

publishing software to populate the testing environment with

consistent testing data. The environment has been used to

test the interoperability of the viewer component. It has also

been used to demonstrate functionalities, to educate end

users, to train maintenance and test engineers, as well as for

deployment acceptance testing.

REFERENCES

[1] Noumeir R., Requirements for Interoperability in Healthcare

Information Systems, Journal of Healthcare Engineering 3, no. 2,

p.323-346, 2012

[2] Noumeir R., Sharing Medical Records: The XDS Architecture and

Communication Infrastructure, IEEE IT Professional, v 13, n 4, p 46-

52, 2011

[3] EHR Progress in Canada- Canada Health Infoway, [Online] Available

https://www.infoway-inforoute.ca/index.php/progress-in-canada, Feb

3rd, 2013

[4] Nationwide Health Information Network (NHIN) Overview, [Online]

Available, http://www.healthit.gov/policy-researchers-

implementers/nationwide-health-information-network-nwhin, Feb 3rd,

2013

[5] Where in the World is CDA and XDS, [Online] Available

http://www.google.com/maps/ms?gl=us&ie=UTF8&oe=UTF8&msa=

0&msid=110535847732151766411.00047b0b46314e91435c9,

February 3rd, 2013.

[6] The Digital Imaging and Communications in Medicine (DICOM)

standard, [Online] Available http://medical.nema.org, Feb 3rd, 2013

[7] IHE Technical Framework and supplements, [Online] Available

http://www.ihe.net/Technical_Framework/index.cfm, Feb 3rd, 2013

[8] OpenPix/PDQ, [Online] Available

projects.openhealthtools.org/sf/projects/openpixpdq, Feb 3rd, 2013

[9] OpenXDS, [Online] Available

projects.openhealthtools.org/sf/projects/openxds, Feb 3rd, 2013

[10] OpenATNA, [Online] Available

projects.openhealthtools.org/sf/projects/openatna, Feb 3rd, 2013

[11] DCMTK DICOM Toolkit, [Online] Available

http://dicom.offis.de/dcmtk, Feb 3rd, 2013

[12] IHE-XDS-Imaging, Testing Software Source Code, [Online]

Available http://sourceforge.net/projects/ihe-xds-imaging, Feb 3rd,

2013

[13] Web scarab, [Online] Available

http://sourceforge.net/projects/owasp/files/WebScarab/, Feb 3rd, 2013

[14] Noumeir R., Bérubé R, IHE cross-enterprise document sharing for

imaging: interoperability testing software, Source Code Biol Med.,

vol. 5, no 9, sept. 2010.

[15] Open Health Tools Java IHE API, [Online] Available

projects.openhealthtools.org/sf/projects/iheprofiles, Feb 3rd, 2013

Figure 4. The auto-publisher data flow

4770

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

