
 

 

Abstract— Utilising strategically positioned bed-mounted 

accelerometers, the Passive Sleep Actigraphy platform aims to 

deliver a non-contact method for identifying periods of 

wakefulness during night-time sleep.  One of the key problems 

in developing data driven approaches for automatic sleep 

monitoring is managing the inherent sleep/wake class 

imbalance.  In the current study, actigraphy data from three 

participants over a period of 30 days was collected.  Upon 

examination, it was found that only 10% contained wake data. 

Consequently, this resulted in classifier overfitting to the 

majority class (sleep), thereby impeding the ability of the 

Passive Sleep Actigraphy platform to correctly identify periods 

of wakefulness during sleep; a key measure in the identification 

of sleep problems.  Utilising Spread Subsample and Synthetic 

Minority Oversampling Techniques, this paper demonstrates a 

potential solution to this issue, reporting improvements of up to 

28% in wake detection when compared to baseline data while 

maintaining an overall classifier accuracy of 90%. 

I. INTRODUCTION 

While the function of sleep is not fully understood, it is 

known to be an essential biological function [1]. 

Correspondingly, there are a range of medical conditions and 

lifestyle factors known to have a detrimental impact on the 

duration and quality of sleep [2].  Depending on the severity, 

sleep problems have been linked to numerous health related 

issues including a reduction in physical and mental 

performance and is, furthermore, considered a risk factor in 

a range of secondary conditions such as diabetes and 

depression [2].  Subsequently, due to these wide ranging 

consequences, it is clear that benefits may be gained from 

proactively identifying and monitoring sleep problems. 

A. Sleep Monitoring Technologies 

In recent years there has been a growing interest in the 

provision of a technological solution suitable for monitoring 

sleep at home.  A popular alternative to polysomnography 

(PSG) achieving widespread clinical approval in recent years 

is sleep actigraphy [3].  This approach utilises a piezoelectric 

accelerometer embedded within a wrist-worn watch-like 

device to record a wearer’s movement; the amplitude of 

these movements are subsequently used to determine the 

wearer’s sleep/wake state.  While not diagnostically as 

sensitive as PSG, comparatively, sleep actigraphy is less 

costly, suitable for long-term observation, minimally 

invasive and applicable for use at home [3].  The successful 

operation of sleep actigraphy, however, is reliant on user 

compliance.  For example, users must be comfortable 

wearing the device at all times, particularly while sleeping. 

Furthermore they must remember to replace the device when 

removed for bathing, charging etc. For this reason, there is 

merit in the development of a non-contact pervasive 

bedroom based approach that would mitigate or remove user 

compliance as a risk to data acquisition.  

Non-contact methods of monitoring sleep are, however, 

predominantly confined to research environments.  Systems 

involving under mattress pressure sensors [4], Doppler based 

radar [5] and bed feet load cells [6] have all been reported. 

While these approaches have been somewhat effective, all 

require the use of application specific equipment to function. 

The Passive Sleep Actigraphy (PSA) platform, presented in 

our earlier work [7, 8] proposes an alternate approach to 

non-contact sleep monitoring that is based on traditional 

sleep actigraphy.  In the current implementation, a number 

of strategically positioned wireless accelerometers are 

deployed on a mattress to record the movements of an 

occupant while in bed.  In alignment with traditional sleep 

actigraphy techniques, the amplitude of these movements 

has been evaluated in order to determine the sleep/wake state 

of the bed occupant.  This highlights one significant 

advantage of the PSA platform in that it is able to directly 

adopt the techniques employed by clinically validated sleep 

actigraphy into this potential non-contact alternative.  

B. Current Work 

Both the PSA Platform and non-contact approaches 

previously discussed have the potential for determining the 

sleep/wake state of an individual whilst in bed.  There is, 

however, an inherent issue in the training of many classifiers 

due to the typical class distribution of sleep and wake data.  

This issue is highlighted in the dataset collected during our 

previous work, which comprised of 129 hours of bed based 

actigraphic data, with only 15% of this data being labelled as 

wake.  This distribution is expected, given that an individual 

in bed at night will typically spend the majority of their time 

asleep.  This imbalance, however, can lead to issues of 

classifier overfitting where in order to achieve the highest 
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possible overall accuracy, the classifier will favour the 

majority class [9].  Within the context of the PSA platform, 

this is expressed by a high classification performance in 

identifying periods of sleep at the cost of correctly 

identifying wake periods.  

Imbalanced data sets are not uncommon in the field of 

pattern recognition and machine learning.  Fraud detection, 

for example, often has a class distribution in the order of 100 

legitimate instances to one fraudulent instance [10].  

Likewise, the detection of oil spills in satellite images is 

reported in the order of 1000:1 [11].  Indeed some 

classification problems must address a class imbalance in the 

order of 10,000:1 [11].  A further consideration when 

dealing with imbalanced datasets is that often the correct 

identification of the minority class yields the most useful 

information.  For example the primary output of a fraud 

detection system is suspected fraudulent transactions, not 

legitimate ones.  Subsequently, within this work, correctly 

identifying wakeful periods has a higher diagnostic value 

than correctly identifying periods of sleep for the purposes 

of identifying potential sleep problems [3].  

The techniques of undersampling and oversampling are 

often used to address class imbalance problems [9].  Both 

undersampling and oversampling manipulate a given dataset 

until a specified class distribution has been achieved.  

Undersampling achieves this by removing instances of the 

majority class, while oversampling operates by replicating or 

synthesising additional instances from the minority class [9].  

In this work, both undersampling and oversampling will be 

evaluated as potential solutions to address the sleep/wake 

class imbalance problem for non-contact bed-based 

actigraphic recordings.  

II. MATERIALS AND METHODS 

In the current study, PSA was investigated as a non-

contact method for identifying disturbed sleep by localising 

periods of wakefulness derived from the recorded movement 

of a participant whilst in bed. 

A. Hardware Deployment 

This study utilised wireless kinematic sensors with tri-

axial accelerometers attached to specific points on a bed to 

identify the movements of the bed occupant during sleep.  

For the purposes of evaluating optimal accelerometer 

placement, five Shimmer v2.0r (Realtime Technologies, 

Ireland) sensor motes were deployed as summarised in 

Figure 1.  This comprised of three mattress mounted 

accelerometer positions, one to the middle left, middle right 

and top centre of the mattress.  Additionally, devices were 

placed centrally in the participant’s duvet and pillowcase.  

Each unit recorded time stamped values of acceleration on 

the X, Y and Z axis, sampled at 51.2Hz and transmitted 

samples in real time via Bluetooth to a nearby laptop 

running a LabVIEW (National Instruments) application 

designed to capture the data.   

B. PSA Validation  

Originally selected for the PSA platform in [7], a Philips 

Respironics Actiwatch Spectrum (actiwatch) containing a 

tri-axial accelerometer sampling at 32Hz was employed for 

the purposes of validation.  Data was captured and stored 

locally on the actiwatch in 30sec epochs pending transfer via 

USB to a computer running the Actiware software.  

C. Participants 

This paper presents the findings from an investigation 

involving three participants (one male, two female; age 21-

30 years).  All participants described themselves as healthy 

with no clinically diagnosed sleep problems and confirmed 

they would be sleeping in a single occupancy bed throughout 

the trial period.  Subsequently, each participant was invited 

to record data for 10-nights over a 14-night period.   

D. Data Processing 

From a theoretical perspective, the actigraphy data 

gathered from the PSA platform contains the required 

information to determine a participant’s sleep/wake status. 

Adapted from traditional sleep actigraphy techniques, our 

previous work implemented and evaluated a number of steps 

designed to extract features applicable to sleep/wake 

detection from the raw accelerometer signal [7, 8].  This 

process begins by converting the magnitude of the 

accelerometer signal into activity counts summarised in 

30sec epochs to facilitate data synchronisation with the 

actiwatch.  These activity counts are derived using the Time 

Above Threshold (TAT) method with a threshold of 0.1g 

and Digital Integration (DI) methods [7].  By utilising TAT 

and DI methods, the activity counts can be used to represent 

both the duration and amplitude of any movement within 

each epoch [3].  Next, a number of statistical features 

previously identified by Tilmanne et al. [12] and evaluated 

for the PSA platform in [7, 8] are extracted from both TAT 

and DI activity counts.  These features, in addition to the 

TAT and DI activity counts, are time synchronised with the 

Sleep/Wake state reported by the Actiwatch for each epoch.  

The resulting baseline dataset can then be input directly into 

a nominated classifier or further manipulated as required.  

E. Data Undersampling and Oversampling 

When evaluating potential undersampling techniques, it is 

important to note that there may be instances that are 

important to achieving the classification objective.  

Therefore, there is a greater chance of optimising 

classification performance if discriminant instances can be 

identified and kept, while less discriminant instances may be 

marked for exclusion.  Unfortunately, in this work there 

currently exists no benchmark on which to allocate the merit 

of one sleep instance over another.  Subsequently, simple 

random selection was employed using the Spread Subsample 

(SS) filter within WEKA (University of Waikato, New 

Zealand) to achieve the desired sleep/wake class balance. 

Some implementations of oversampling operate by 

replicating existing instances from the minority class, 

however, this approach has been criticised for introducing 

additional overfitting problems [11].  Focusing on Decision 

Trees (DT) given that they are implemented within the PSA 

platform, Chawla et al. [10] demonstrates that by 

oversampling through data replication, the effect is to isolate 

a smaller decision region in the feature space thus reducing 
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the DT's ability to identify unknown instances outside the 

training set, effectively overfitting.  A proposed solution 

exists in the Synthetic Minority Oversampling Technique 

(SMOTE), which has demonstrated substantial 

improvements over data replication [10, 11].  In this 

oversampling technique, synthetic data is generated within 

the scope of the minority class using a k nearest neighbour 

approach [10].  This effectively introduces new minority 

instances while preventing the overfitting issues previously 

discussed.  Reporting good results in a number of 

classification modalities including DTs [10], the SMOTE 

oversampling method was applied to the baseline datasets. 

 

Figure 1.  Standard deployment configuration for Shimmer accelerometers. 

III. RESULTS 

Over the trial period, a total of 30 nights actigraphy data 

was collected, summarised into epochs using the features 

extracted from TAT and DI activity counts, then collated by 

accelerometer position and participant.  Table I summarises 

this data and highlights the continuing class imbalance issue 

with only 11% of the data being labelled as wake. 

TABLE I. SUMMARY OF SLEEP VS. WAKE DATA RECORDED 

 

DS 

P1 P2 P3 All 

Hrs % Hrs % Hrs % Hrs % 

S 63.80 95.14 48.11 94.53 68.86 79.04 180.77 89.07 

W 3.10 4.86 2.63 5.47 14.02 20.36 19.75 10.93 

T 66.90 - 50.74 - 82.88 - 200.52 - 
Note: S-Sleep, W-Wake, T-Total 

Note: P1-Participant 1, P2-Participant 2, P3-Participant 3, All- Combined dataset of P1, P2 & P3 

 

Previous work using the PSA platform [7] identified and 

evaluated a number of DT classification methods.  Of these, 

the Random Forest (RF) achieved the best overall 

sleep/wake predictive performance.  Subsequently, this same 

approach was adopted into the current work with sensitivity 

and specificity measures being calculated to determine if the 

RF classifier's performance may be increased through the 

use of SS and SMOTE techniques.  Note that for this work 

sensitivity refers to the proportion of known sleep epochs 

that are positively identified as sleep.  Likewise, specificity 

refers to the proportion of known wake epochs that are 

positively identified as wake. 

Table II summarises the RF classification performance for 

each of the datasets by accelerometer position and 

participant.  Excluding participant 3 the optimal positions 

are located in the pillow (PL) and middle right (MR).  Note 

that all participants favoured sleeping on the right side of 

their bed, hence the MR accelerometers improved 

performance over the middle left (ML) position as discussed 

in [7,8].  Based on user experience feedback and 

classification performance, the MR accelerometer was 

nominated as the optimal position on which to evaluate SS 

and SMOTE sampling techniques.  Table III provides a 

comparison of the baseline MR classification results against 

experiments involving SS, SMOTE and a combination of the 

two termed as hybrid.  The impact of sampled data on 

classification performance was evaluated by applying a 

number of different scaling factors to the baseline dataset.  

TABLE II. SUMMARY OF SENSITIVITY AND SPECIFICITY RESULTS FOR 

THE RF CLASSIFIER BY PARTICIPANT ID AND ACCELEROMETER POSITION 

Position Result Type P1 P2 P3 All 

Middle Left 
Sen. 1.00 0.99 0.97 0.99 

Spe. 0.62 0.64 0.55 0.56 

Middle Right 
Sen. 0.99 0.99 0.97 0.99 

Spe. 0.65 0.66 0.56 0.57 

Top 
Sen. 1.00 0.99 0.97 0.99 

Spe. 0.61 0.63 0.54 0.53 

Duvet 
Sen. 0.99 0.99 0.97 0.98 

Spe 0.62 0.62 0.58 0.57 

Pillow 
Sen. 1.00 0.99 0.97 0.98 

Spe 0.65 0.65 0.58 0.58 

TABLE III. IMPACT OF OVERSAMPLING, UNDERSAMPLING AND A 

COMBINATION OF BOTH TECHNIQUES ON SLEEP/WAKE CLASSIFICATION 

PERFORMANCE BY PARTICIPANT FOR THE MR ACCELEROMETER POSITION. 

Resample 

Type 

Sampling 

Factor 

Result 

Type 
P1 P2 P3 All 

N/A Original 
Sen. 0.99 0.99 0.97 0.99 

Spe. 0.65 0.64 0.57 0.57 

O
v

er
sa

m
p

li
n

g
 

M
in

o
ri

ty
 C

la
ss

 

In
cr

ea
se

d
 B

y 

25% 
Sen. 0.99 0.98 0.96 0.98 

Spe. 0.70 0.74 0.66 0.65 

50% 
Sen. 0.99 0.99 0.96 0.98 

Spe. 0.69 0.73 0.66 0.65 

100% 
Sen. 0.99 0.99 0.96 0.98 

Spe. 0.73 0.75 0.73 0.72 

200% 
Sen. 0.99 0.99 0.95 0.98 

Spe 0.79 0.82 0.82 0.80 

U
n

d
e
r
sa

m
p

li
n

g
 

M
a
jo

ri
ty

 C
la

ss
 

S
ca

le
d
 B

y 

8:1 
Sen. 0.99 0.98 0.97 0.98 

Spe. 0.69 0.74 0.56 0.59 

5:1 
Sen. 0.98 0.97 0.97 0.97 

Spe. 0.71 0.77 0.57 0.63 

3:1 
Sen. 0.96 0.96 0.94 0.95 

Spe. 0.74 0.79 0.63 0.68 

1:1 
Sen. 0.89 0.89 0.82 0.86 

Spe 0.78 0.84 0.72 0.75 

H
y

b
ri

d
 

M
ix

 o
f 

u
n
d

er
sa

m
p

li
n
g

 a
n

d
 

o
ve

rs
a

m
p

li
n
g
 

25% 
8:1 

Sen. 0.99 0.99 0.96 0.98 

Spe. 0.70 0.76 0.62 0.62 

50% 

5:1 

Sen. 0.98 0.98 0.96 0.98 

Spe. 0.75 0.79 0.67 0.69 

100% 

3:1 

Sen. 0.97 0.97 0.96 0.97 

Spe. 0.80 0.83 0.75 0.78 

200% 
1:1 

Sen. 0.94* 0.95* 0.92* 0.93* 

Spe 0.88* 0.89* 0.85* 0.86* 
Note: * best sensitivity and specificity performance achieved per dataset as indicated by accuracy 

 

From Table III a universal improvement in specificity 

performance can be viewed as the class imbalance equalises. 

SS, however, has a corresponding decline in sensitivity 

  
Shimmer secured in 

pockets located at the 

middle of both pillow 

and duvet. 
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performance as the scaling factor increases reducing the 

overall accuracy of the classifier.  Overall, the hybrid 

approach performs the best by producing the highest overall 

specificity results whilst mitigating the sensitivity loss in SS. 

IV. DISCUSSION 

As previously discussed, SS and SMOTE have been 

evaluated as potential techniques for increasing the ability of 

the PSA platform to correctly identify wake periods during 

sleep while maintaining high overall accuracy.  The baseline 

dataset presented in this work continues to show evidence of 

overfitting due to class imbalance as evidenced through a 

high sensitivity value of up to 0.99 for the MR position and 

an overall sleep/wake balance of approximately 10:1. 

Both SS and SMOTE produced improved specificity 

results as the number of sleep to wake instances is reduced.  

For a 1:1 sleep/wake radio, SS produced specificity values 

of up to 0.84, an improvement of 20% over the baseline 

performance.  There is, however, an average decline of 12% 

in sensitivity performance across all datasets for this 

sampling factor thus reducing the overall accuracy of the 

PSA platform.  As previously discussed, removing 

statistically relevant instances of sleep from the majority 

class may cause this.  Future evaluations of undersampling 

for the PSA platform should consider including functionality 

for identifying statistically redundant sleep instances for 

removal.  This feature selection may be implemented as an 

independent function; however, a wrapper approach, which 

utilises the predictive power of a nominated classifier to 

optimise the feature selection algorithm, as discussed by 

Guyon [13] may further improve classifier performance. 

SMOTE produced improvements of up to 25% at an 

oversampling factor of 200%, however, with a slightly lower 

specificity performance of 0.82 when compared to SS.  One 

particular advantage of oversampling is that no data is 

removed from the overall dataset avoiding the selection 

problems of SS.  This is seen in Table III with only a 

minimal reduction of 2% in sensitivity performance.  

Continued evaluation of the SMOTE approach should 

consider further increasing the sampling factor.  Chawla et 

al. [10] reports good results with SMOTE using a 500% 

increase in minority class size.  It should, however, be noted 

that at higher sampling factors, SMOTE has been known to 

over generalise the data.  Further work should consider 

evaluating adaptive synthetic sampling techniques such as 

Borderline-SMOTE [14].  In this approach, minority 

instances bordering the majority class that are often 

misclassified are reinforced through synthetic data.  This 

mitigates the generalisation issues previously mentioned by 

limiting the amount of data generation that may be required. 

Implementing a combination of SS and SMOTE 

techniques worked well and provided the best specificity 

results of 0.89, an increase of 28% over the baseline 

performance while somewhat mitigating the sensitivity loss 

caused by SS.  At this stage the combination method would 

appear to be the optimal approach, however, it is important 

to note that its performance will be impacted by issues from 

both SS and SMOTE as previously discussed.  This said, as 

discussed in [9], the subsequent benefits of tuning and 

combining the undersampling and oversampling approaches 

may be to further maximise the specificity and overall 

classification performance.  

In conclusion, this preliminary evaluation has identified 

that the accurate identification of wakeful periods may be 

achieved by utilising undersampling and oversampling 

techniques.  Furthermore, by employing a combination of 

the two methods, specificity performance can be further 

enhanced while mitigating the negative impact on 

sensitivity.  Overall the results presented here are considered 

positive and a number of potential methods to further tune 

the current approach have been suggested.  Moving forward, 

however, it is important to ensure that with the application of 

undersampling and oversampling techniques, the resulting 

datasets must remain representative of the real world data on 

which they are based. 
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