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Abstract² Human muscle force estimation is important in 

biomechanics studies, sports and assistive devices fields. 

Therefore, it is essential to develop an efficient algorithm to 

estimate force exerted by muscles. The purpose of this study is 

to predict force/torque exerted by muscles under dynamic 

muscle contractions based on continuous wavelet transform 

(CWT) and artificial neural networks (ANN) approaches. 

Mean frequency (MF) of the surface electromyography (EMG) 

signals power spectrum was calculated from CWT. ANN 

models were trained to derive the MF-force relationships from 

the subset of EMG signals and the measured forces. Then we 

use the networks to predict the individual muscle forces for 

different muscle groups. Fourteen healthy subjects (10 males 

and 4 females) were voluntarily recruited in this study. EMG 

signals were collected from the biceps brachii, triceps, 

hamstring and quadriceps femoris muscles to evaluate the 

proposed method. Root mean square errors (RMSE) and 

correlation coefficients between the predicted forces and 

measured actual forces were calculated. 

I. INTRODUCTION 

Walking, squatting and lifting heavy load are 
accomplished by contracting skeletal muscles. It is important 
and a great interest to find approaches to determine the forces 
produced by muscles under dynamic muscle contractions in 
biomechanical research. Especially, in the application fields 
such as rehabilitation, human-machine interface or sports, it 
is essential to estimate the muscle forces performed on the 
human movement control system. For assistive devices, 
estimated forces are commonly used to trigger the movement 
and drive the motor to assist the users intuitively. However, 
to record forces produced by muscles during various 
activities directly is currently infeasible. Some current 
methods for the measurement of individual forces exerted by 
muscles require special force sensors. In addition, most of the 
commercial force or torque sensors are bulky, expensive, 
inconvenient and not user friendly.  

Typically, current approaches for predicting human limb 
movement and the amount of force required to accomplish a 
task have been studied using surface Electromyography 
(EMG) signals. An EMG signal is the direct reflection of 
muscle activities. It is the action potential generated in a 
muscle as the command signal from motion control system of 
human [1]. Therefore, before muscles contract, the EMG 
signals will be generated to command the action. Hence, 
EMG signals can be used as a predictor of force exerted by 
muscles. Extracting EMG signals features to predict muscle 
forces was studied by some research studies. These features 
such as mean absolute value (MAV), averaged rectified value 
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(ARV), integrated EMG (iEMG), smoothed value or low-
pass filters and root mean square (RMS) of EMG signals are 
commonly used to estimate force/torque. Several studies 
attempted to find the optimal low-pass filter of the rectified 
EMG signal for muscle force prediction [2-4].  

Linear or non-linear relationships  have been found 
between EMG signal characteristics and muscle forces under 
isometric muscle contractions by recent studies, which is one 
of the essential steps of muscle force estimation [2, 3, 5, 6]. 
However, for muscles under dynamic contractions, the 
relationship between EMG and muscle force is much more 
complicated due to the muscular properties, such as the 
varying muscle lengths, muscle contraction velocity, 
electrodes locations [7]. Some studies have been made to 
investigate the EMG-force relationship and estimate muscle 
forces by using a musculoskeletal models [8].  The results 
showed that muscle models were a good way to estimate 
muscle forces during movement tasks. However, developing 
muscle models requires some external kinematic or dynamic 
data measured by dynamometers or other sensors. 
Additionally, these models may induce problems by making 
assumptions about some unknown nonlinear parameters 
which cannot be measured experimentally [9].  

Artificial neural networks (ANN) has been used to 
approach complicated relationships successfully in 
biomechanics research [10-12]. As ANN is able to extract 
features from complicated signals and acts as a black box 
model to approximate complex nonlinear mappings directly 
from the input signals, it is commonly used for muscle force 
estimation. In addition, no detailed information such as the 
mathematical expression that relates the EMG signals to the 
muscle force is involved when using ANN.  

When muscles contract under a varying force, the EMG 
signals cannot be assumed to be stationary, which implies the 
traditional signal processing approaches may not be suitable. 
Under such circumstances, time-frequency analysis is more 
appropriate as it would provide direct information about the 
frequency components occurring at any given time. In order 
to estimate muscle force with time-frequency analysis, 
continuous wavelet transform (CWT) theory [13] was applied 
to EMG signals recorded during dynamic muscle 
contractions. This transform was derived as an extension of 
the short time Fourier transforms, which is used in signal 
processing with time-frequency analysis.  

The purpose of this study was to predict force/torque 
exerted by muscles under dynamic muscle contractions based 
on CWT and ANN approach. Mean frequency (MF) of EMG 
signal power spectrum was calculated from CWT to extract 
time-frequency features. An ANN was implemented to derive 
the MF-force relationships from a subset of EMG signals and 
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measured forces. Then we use the relationships to predict the 
individual muscle forces for different muscle groups. 
Experiments were conducted to collect EMG signals from 
biceps brachii, triceps, hamstring and quadriceps femoris 
muscles to validate the proposed methods.  

II. METHODS 

A. Surface EMG and Force Measurement 

Fourteen healthy subjects (10 males and 4 females) were 
voluntarily participated in this study. 7KH� VXEMHFWV¶�PHDQ� ��
standard deviation age, weight and height were 26.3±2.9 
years, 65.6±12.3 kg and 170.3±7.0 cm respectively. Each 
subject agreed and signed the written informed consent 
documents before participating in the experiments. All the 
subjects were healthy and none of them reported any 
neurological disorders or musculoskeletal problems. The 
experiments were approved by the local institutional review 
board.  

Surface EMG signals were collected from biceps brachii, 
triceps, hamstring and quadriceps femoris muscles. The 
signals were recorded using self-adhesive Ag/AgCl surface 
electrodes (Noraxon USA, Inc.). All electrodes pairs were 
placed parallel to the general direction of muscle fibers on the 
selected muscle groups. To reduce the electrical impedance 
between the targeted skin and the electrodes, skin preparation 
(removal of excess hair and cleaning the skin with alcohol) 
was undertaken before electrodes were attached to the skin. 
Contraction tests were carried out to make sure there was 
good contact between electrodes and skin. EMG signals were 
pre-amplified at the electrode site and the common mode 
rejection ratio of the pre-amplifier was 95 dB. The signal was 
recorded with a 12 bit analog to digital convertor at a 
sampling rate of 10K Hz. The recorded signal was 
subsequently stored in a computer for off-line analysis.  

A force-measuring strain gauge setup with handles was 
used to measure the force exerted by muscles. Force signal 
from the strain gauge was amplified with a strain gauge 
amplifier (RS Components Ltd). The force and voltage 
relationship of the force measurement setup was calibrated 
using a digital force gauge (IMADA, DS2-50N) before the 
experiments were conducted. The measured force was used 
in the ANN training and it is a reference to validate the 
feasibility of the proposed method. Graphs depicting the 
target force, actual applied force and EMG signals were 
displayed real-time on a computer screen facing the subjects 
to provide a visual biofeedback while they performed their 
muscle contractions. 

B. Experimental Protocol 

Subjects sat comfortably in front of the force 
measurement setup. To help the subjects familiarize with the 
setup and the experimental tasks, warm-up exercises were 
performed by slowly doing elbow and knee 
flexion/extension. A target trajectory of force amplitude in 
the shape of a dynamic half-sinusoidal was displayed on 
computer. The subjects exerted muscle contraction forces in 
accordance to the trajectory by performing their dominant 
elbow and knee flexion or extension. Each subject performed 
four trials with the different muscles. Fig.1 shows the 
experimental setup used in this study. The collected signals 
were used for off-line analysis by down sampling to 5000 Hz 

in MATLAB for further signal processing. A sample of the 
raw EMG signal from one trial is shown in Fig. 2. 

 

Fig.1. Experiment setup. 1: surface EMG electrodes; 2: handle for legs 

experiments; 3:force sensor. 

 

Fig. 2. Sample of raw EMG signal recorded for one trial: Biceps Brachii 

elbow flexion (EMG signal amplitude and force amplitudes were 

normalized to be 1). 

C. Force Estimation 

ANN is a mathematical model inspired by biological 
neural networks. It consists of interconnection of multiple 
layers of artificial neurons. The processing units are called 
³QHXURQV´�ZKLFK�DUH�LQWHUFRQQHFWHG�DQG�GLVWULEXWHG� LQ� OD\HU��
Fig.3 depicts the architectural graph of a multilayer network 
used in this study. In this figure, the blue circles are the 
neurons, and every neuron unit receives input from some 
other units or from an external source. The output of the 
neurons in each layers are interconnected to the other layer 
neuron inputs.  

 

Fig.3. Architectural graph of a multilayer network used in this study. 

Since the time-frequency analysis provides direct 
information about the frequency components occurring at any 
given time, it is much more appropriate for analyzing time-
varying EMG signals recorded under dynamic muscle 
contractions. In time-frequency analysis methods, mean 
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frequency (MF) of the power spectral density is one of the 
most commonly used characteristics of EMG signals [1, 14]. 
In this study, CWT was applied to obtain the MF of the EMG 
signals. CWT is a time-scale representation that is suitable 
for analyzing non-stationary and time-varying signals. It is an 
alternative method from short time Fourier transform by 
replacing the frequency shifting operation with a time scaling 
operation. CWT has a good frequency resolution for a low-
frequency signal and a good time resolution for a high-
frequency signal simultaneously. Given the input signal��:�;, 
CWT of the signal �:�; is defined as 

�q:�á R; L ì �:�;
¶

?¶
T_á¤
Û :�;��                    (1) 

where �>0 represents the scale parameter, R�represents the 
translation parameter (time shifting), T_á¤

Û :�;  could be 

calculated by scaling the mother wavelet T:�; at time R and 
scale �, 

T_á¤:�; L
5

¾_
T:

r?¤

_
;                          (2) 

When scale =  becomes large, the basis function T_á¤:�; 

will be in a stretched version, which is important to analyze 
the low-frequency components of the signal. Conversely, 
when the scale parameter is small, the basis function will be 
compressed, which is corresponding to the high-frequency of 
the signal.  

The square of the absolute value of the CWT value 
�:X; L ��q:�á R;�

6 is called scalogram, which is similar to 
the spectrogram in Fourier transform. It represents the energy 
distribution of the EMG signal over the entire time-scale 
plane. In MATLAB implementation�� ³0RUOHW´� PRWKHU�
wavelet with a wavelet scale length of 196 was selected to 
calculate the scalogram. By using the scalogram, the MF 
represents the EMG signal frequency characteristics, which 
can be defined as the average frequency of the signal power 
spectrum,  
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where X  is the frequency variable and �:X;  is the power 
spectrum density (PSD) of the EMG signal. A 4th order low-
pass Bessel filter with 5 Hz cut-off frequency was applied to 
smoothen the MF signal. Afterwards, the filtered MF signal 
was normalized to the maximum mean frequency of the 
contraction trial. This normalization procedure could reduce 
the variability in EMG mean frequency amplitude between 
subjects, due to differences such as muscle length and fiber 
conduction velocity. 

Fig.4 illustrates the signal flow diagram for the proposed 
CWT-ANN based approach. The neural networks models 
were trained using the network input data and the measured 
force. The input data to the ANN models for training were 
the normalized MF from each subset.  The first one or two 
contractions of the EMG signals from each trial of each 
subject were selected as the subset to calculate the MF of 
signal power spectral. The training target was the normalized 
measured force correspondingly. For different subjects, the 
skin impedance at the electrode locations is different. In 
addition, the muscle lengths during dynamic contractions 
vary from subject to subject. To avoid the influences from 

these variable factors as much, the neural works training of 
each muscle group was carried out for every subject 
individually. As mentioned in the previous section, four trials 
were performed by each subject. For each subject, four ANN 
models were created using four datasets. 

 

Fig. 4. Signal Flow Diagram for Muscle Force Estimation. 

III. RESULTS 

A. Network Parameter Settings 

In MATLAB implementation, a common method of 

training ANN models, conjugate gradient back propagation 

(BP) algorithm, was used to adjust the weights in the ANN 

models. BP has two steps, a feed-forward stage and a 

learning stage. The two steps are repeated until the 

difference between the network predicted output signal and 

the target signal is below a specified value.  

Parameters selection of the ANN model is important for 

the performance of propose method. Before training the 

network, the input and the target data in each training set 

were normalized to [minimum, maximum], which was 

corresponding to -1 to 1. The networks were trained for 2000 

epochs with a very small training performance goal 10-15. In 

this study, a feed-forward network was created with a hidden 

layer of 6 neurons.  

B. Force Estimation Results 

The trained neural networks were implemented into the 
respective subjecW¶V� QRUPDOL]HG�0)� VLJQDOs. Fig. 5 to Fig.8 
show the muscle force estimation results for subject 12, 4, 8 
and 14 with the four different measured muscle groups, 
respectively. The green solid line indicates the measured 
force, and the blue dash-dot line shows the predicted force by 
the CWT-ANN based method. The muscle force estimation 
results were quantitatively evaluated against the measured 
force using the root mean square error (RMSE) and 
correlation coefficients parameters for every single 
contraction of each subject. Table 1 tabulates the averaged 
RMSE and correlation coefficients of the 14 subjects. 
Evidently, for all the subjects, the average RMSEs are low 
with 0.1701±0.047. High correlation coefficients were 
obtained with 0.9398±0.0230 in average.  

 

Fig.5. Force estimation results using the proposed CWT-ANN based 

method (Subject 12, biceps brachii, elbow flexion) 
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Fig.6. Force estimation results using the proposed CWT-ANN based 

method (Subject 4, triceps brachii, elbow extention) 

 

Fig.7. Force estimation results using the proposed CWT-ANN based 

method (Subject 8, hamstring, knee flexion) 

 

Fig.8. Force estimation results using the proposed CWT-ANN based 

method (Subject 14, quadriceps femoris, knee extention) 

TABLE I.  CWT-ANN BASED FORCE ESTIMATION RESULTS  
(AVERAGE RMS ERROR AND CORRELATION COEFFICIENTS OF EACH SUBJECT) 

Subjects RMS error 
Correlation 

Coefficient 

S1 0.1457 0.9656 

S2 0.1727 0.9523 

S3 0.1041 0.9627 

S4 0.0751 0.9873 

S5 0.1532 0.9379 

S6 0.1823 0.9417 

S7 0.2015 0.9210 

S8 0.2447 0.9510 

S9 0.1114 0.9410 

S10 0.1950 0.9389 

S11 0.1907 0.9202 

S12 0.1818 0.9066 

S13 0.2091 0.9077 

S14 0.2121 0.9229 

Average±svd 0.1701±0.047 0.9398±0.0230 

IV. CONCLUSION 

This paper studied the use of CWT and ANN for muscle 
force/torque estimation during dynamic muscle contractions 
IRU�SUHGLFWLQJ�KXPDQ¶V�LQWHQWLRQ�DQG�PRQLWRULQJ�WKHLU�PXVFOH�
performance. MF of EMG signals in time-frequency analysis 
was calculated from CWT to extract time-frequency features.  
ANN models were implemented to derive the MF-force 
relationships from the subsets of EMG signals and measured 
forces. Estimated forces were obtained using the trained 
networks from every subject individually. The RMSE and 

correlation coefficients between the predicted forces and 
measured actual forces were also calculated to evaluate the 
results quantitively. The results show that the muscle forces 
were accurately estimated from the EMG signals. Future 
works should compare this method with a linear regression 
model. This proposed method will be implemented in real-
time on the assistive device [2].   
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