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Abstract— Obstructive sleep apnea (OSA) is a prevalent 

disorder. The accepted method of diagnosis in widespread 

clinical practice, polysomnography (PSG), is costly and very 

time consuming; therefore, quick screening methods, especially 

when there is a need for quick diagnosis, is of great interest. 

Diagnostic methods which exploit subtle differences in breath 

sounds recorded during wakefulness, such as our group’s 

Awake-OSA technology, have shown their capability to 

diagnose OSA at the research stage. Simplifying the breath 

sound recording procedure employed in the Awake-OSA 

diagnostic method would increase its efficiency when used in a 

clinical setting. In this study, we adopted breath sound data 

collected during wakefulness in two positions (sitting upright 

and supine) and two breathing maneuvers (nose and mouth 

breathing) from our previous study [10], and ran hypothesis 

tests on a wide variety of sound features to select the most 

significant features correlated with OSA. The goal was to 

investigate which combinations of patient position and 

breathing maneuver contribute the least to the significant 

features amongst groups of people with differing OSA severity, 

thus permitting simplification of the recording protocol. The 

results show that all signals recorded by a combination of the 

two breathing maneuvers and two positions result in features 

significantly correlated with OSA severity; this makes it 

impossible to confidently recommend that a combination be 

omitted from the recording protocol. Nevertheless, the results 

show that the majority of significant features originated from 

recordings made in the supine position. Therefore, as a step 

toward simplification of the Awake-OSA diagnostic algorithm, 

we may use breath sound signals recorded only in the supine 

position and further investigate the accuracy of the algorithm 

in distinguishing amongst groups with differing OSA severity.  

I. INTRODUCTION 

Repeated arousal from sleep can negatively affect health 
and wellbeing. Obstructive sleep apnea (OSA) is a prevalent 
disease [1] which significantly lowers sleep quality, thereby 
impacting the health of sufferers [2–3]. OSA is distinguished 
by recurring upper airway collapse during sleep due to the 
pharynx having greater inherent collapsibility [4]. Airway 
collapsibility depends on anatomical features which include 
the amount of fat present in the pharynx and the size of the 
mandible [5 cited in 4]. Because the pharyngeal dilator 
muscle is more active during wakefulness, OSA sufferers do 
not experience any upper airway obstruction during 
wakefulness [6]. In many patients, an episode of sleep apnea 
may be ended by an arousal, which increases dilator muscles’ 
activity during sleep [6]. These arousals can occur without 
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fully awakening the individual, leaving them with the effects 
of sleep deprivation but without knowledge of its cause. The 
accepted method of OSA diagnosis in widespread clinical 
practice is the overnight polysomnogram (PSG). The 
overnight PSG involves continuous recording of multiple 
physiological signals from the patient, which are then scored 
(interpreted) by a trained sleep lab technologist. Due to the 
high cost of overnight PSG on the health care system, its long 
waiting list, its inconvenience for patients, and also the fact 
that the majority of patients referred to overnight PSG may 
not have OSA in need of treatment, alternative quick 
screening methods have been of great interest [9]. 

Studies have shown that OSA can be diagnosed by 
analysis of breath sounds recorded during sleep [7]. Our 
group has been investigating the use of breath sound signals 
recorded during wakefulness as a potential diagnostic tool for 
screening OSA and its severity [8–10]; the resultant 
technology is called Awake-OSA, in which tracheal breath 
sounds are recorded in two positions, upright and supine, and 
two breathing maneuvers, nose and mouth, while the patient 
is awake. 

The aim of this study has been to investigate whether we 
can shorten and simplify the recording protocol of Awake-
OSA technology while retaining the representative sound 
features. Simplifying the breath sound recording procedure 
would improve the focus of research in this area, and increase 
the efficiency of this screening technique in a clinical setting. 
At the research stage, examining a subset of signals would 
result in fewer sound features per patient, which would in 
turn improve the ability of both the exhaustive and floating 
feature search algorithms used in [10] to find an optimum set 
of features for OSA diagnosis and severity estimation. For 
example, starting with a smaller set of features would allow 
the exhaustive search algorithm to find larger feature subsets 
within a reasonable amount of computational time, and 
would increase the likelihood that the floating search 
algorithm will encounter a combination of features that can 
classify (diagnose) patients more accurately. Furthermore, in 
a clinical setting, we envision that a more efficient version of 
our Awake-OSA diagnostic technology could be employed as 
a pre-screening tool either before surgery, or before referral 
to overnight PSG, thereby permitting more efficient use of 
overnight PSG resources. For example, even though the 
current recording procedure takes significantly less time 
(approximately 20 minutes) compared to overnight PSG, a 
shorter (e.g. 1-5 minutes) protocol may permit the use of this 
technology for rapid pre-screening of OSA in a doctor’s 
office to decide whether to refer the patient to an overnight 
PSG for a detailed sleep assessment [10]. 
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II. METHOD 

A. Data Collection  

The data used in this study were adopted from our 
previous studies [8, 10], which were collected at Misericordia 
Hospital, Winnipeg, from awake patients before they 
proceeded to an overnight PSG assessment. The tracheal 
breath sounds were collected by a miniature microphone 
(Sony ECM-77B) over the suprasternal notch, and recorded 
by an amplifier which band-pass filtered the signal between 
0.05 Hz and 5 kHz (Biopac DA100C) at a sampling rate of 
10240 Hz. The apnea-hypopnea index (AHI) of each patient 
was collected from the PSG assessment by the sleep lab 
technologist, prospectively. Patients were instructed to 
breathe deeply with a constant flow rate following the hand 
movements of the recorder (to assist in keeping the same 
flow rate in breathing) in the upright and again in the supine 
position, while breathing through their nose and then their 
mouth. Thus, from every patient we recorded 4 signals: (I) 
nose breathing while upright, (II) mouth breathing while 
upright, (III) nose breathing while supine, and (IV) mouth 
breathing while supine. To ensure breath phase accuracy in 
all our recordings, the experimenter gave a vocal cue (audible 
on the recording) at the start of the patient’s inspiratory 
phase. 

B. Data Analysis  

Inspiratory and expiratory phases were separated using 
the technique described in [10], which resulted in a series of 
individual breath sound signals. Each breath sound signal, 
consisting of discrete audio samples, was split into 50 ms 
(512 sample) contiguous segments, and the statistical 
variance of each segment computed. The stationary portion 
of each breath sound signal was automatically chosen by 
discarding all audio samples located outside of a 300 ms 
window centered around the 50 ms segment with the highest 
variance. These 300 ms windows were individually 
standardized to have a zero mean and standard deviation of 1 
in order to minimize the influence of plausible differences in 
respiratory flow on the sound features. Next, the power 
spectrum over 100 – 2500 Hz and the bispectrum over 100 – 
2600 Hz were estimated for the sounds in each of these 300 
ms segments for every corresponding breath sound, as 
described in detail in [10]. 

Using the power spectrum and bispectrum estimated for 
each breath, all 28 features listed in Table 1 and all 112 
features listed in Table 2 were computed separately for each 
breath sound. Given that there are 4 signals recorded per 
patient and that the inspiratory and expiratory phases are 
analyzed separately, there are 8 signals per patient. Each 
signal consists of a series of discrete breaths, with 140 (112 + 
28) feature values associated with each breath. Mean feature 
values are computed for all 140 features over all breaths 
originating from each signal. Thus, there are 1120 feature 
values available per patient (140 features × 8 signals). We 
also looked at the differences of the mean feature values 
derived from nose versus mouth breathing, and upright 
versus supine positions. Therefore, in total, we have 2240
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feature values per patient. 

Two statistical t-tests and a one-way unbalanced Analysis 
of Variance (ANOVA) test were used to determine which 
features had a significant (P ≤ 0.01) correlation with AHI, 
and thus have the potential to be used for classification of 
patients with OSA. The first t-test was used to find the 
statistically significant features between the patients with 
AHI ≤ 5 and those with AHI ≥ 30. The second t-test was the 
same as the first, except that the patients were grouped 
according to AHI ≤ 10 and AHI ≥ 20. The one-way 
unbalanced ANOVA was used to find the statistically 
significant features amongst three groups of patients: those 
with AHI ≤ 5, 10 ≤ AHI ≤ 25, and AHI ≥ 30. The sound 
features that passed all three tests were then grouped 
according to the breathing maneuver(s), position(s), and 
breath phase they originated from. These AHI intervals were 
chosen in order to be consistent with our previous studies that 
were based on the clinical importance of these AHI intervals 
[7–10]. 

III. RESULTS 

 The results of all three tests are summarized in Table 3. 
Of all the 2240 available features, a total of 41 features were 
commonly found to be significantly (P ≤ 0.01) different 

 
1 (4 power spectrum (PS) features × 6 sub-bands + 4 PS features × 1 

band + 46 bispectrum (BSP) invariant features + 55 BSP average magnitude 

features + 9 other BSP features + 2 BSP median bifrequency features ) × (4 

position and maneuver combinations + 2 nose minus mouth differences + 2 
supine minus upright differences) × (2 phases) 

TABLE I.  FEATURES DERIVED FROM THE ESTIMATED POWER SPECTRUM OF THE BREATH SOUND SIGNAL [10] 

Feature name Description Equation(s)* 

Signal powera Power contained within the specified frequency band   |       
 ∑              

  (1) 

Relative signal powera Power contained within the specified frequency band relative to 
the power contained over the entire estimated power spectrum 

  |       

  |          

 
(2) 

Spectral centroida,b Frequency around which most of the power is centered    
∑               

  |       

  (3) 

Spectral bandwidtha,b Power spectral density-weighted average of the squared distance 
between the spectral centroid and the different frequency 
components 

∑                     

  |       

  
(4) 

Spectral flatnessb A measure of how similar the breath sound is to a pure tone (i.e. 
its tonality) 

(∏            
)

 
     

  
, where    

  |       

       
 

(5) 
(6) 

Crest factorb A different measure of breath sound tonality           
(
    

  
)  (7) 

*       estimated power spectrum;      lower frequency;     upper frequency. 

a. Feature was computed over six sub-bands of the power spectrum:     100,     150; 150, 450; 450, 600; 600, 1200; 1200, 1800; and 1800, 2500 Hz. 

b. Feature was computed over the entire power spectrum     100,     2500 Hz. 
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among all the sets of AHI groups tested. Of these 41 features, 
some are derived from one of the four signals recorded for 
each patient, and some are difference features, i.e. nose 
versus mouth, upright versus supine, which are calculated by 
simple subtraction of the above features. Thus, difference 
features are derived from two of the four signals recorded for 
each patient. Table 4 lists the number and proportion of these 
41 features when grouped according to the breath sound 
signal(s) and phase from which they were derived. 

Overall, the greatest proportion of features was derived 
from mouth breathing recorded in the supine position (39%). 
When the features are categorized according to which 
position (supine, upright) or position combination (supine 
minus upright) they originate from, the majority of features 
(76%) were derived exclusively from recordings of the 
patient while supine. When the features are categorized 
according to which breathing maneuver (nose, mouth) or 
maneuver combination (nose minus mouth) they originate 
from, the majority of features (54%) were derived 
exclusively from recordings of mouth breathing. (These 

percentages do not add up to 100% because each refers to a 
different grouping of the 41 features, as shown in Table 4.) 

Overall, the number of features derived from the 
inspiratory phase (20) and the number of features derived 
from the expiratory phase (21) are approximately equal. 
When grouped according position and maneuver combination 
or difference thereof (each thick-bordered cell in Table 4), 
the distribution of features amongst breath phase is skewed 
towards inspiration almost as much as it is skewed towards 
expiration (with the exception of features derived from the 
combination of nose minus mouth breathing in the supine 
position, which are equal). Some features derived from 
specific breath phases, and one difference feature, did not 
pass all three hypothesis tests. 

IV. DISCUSSION 

The number of statistically significant features derived 
from breathing sounds recorded in the upright position, both 
exclusively and in combination with the supine position (8 
and 2, respectively) were not comparable with the number of 
features derived exclusively from breathing sounds recorded 
in the supine position (31). Since approximately three-
quarters (76%) of the features were derived exclusively from 
breath sound recordings of the patient in the supine position, 
the recording procedure could probably be shortened by 
recording only nose and mouth breathing in the supine 
position. 

In the supine position, the number of features derived 
exclusively from mouth breathing (16) versus the number of 

TABLE II.  FEATURES DERIVED FROM THE ESTIMATED BISPECTRUM OF THE BREATH SOUND SIGNAL BETWEEN 100 AND 2600 HZ [10] 

Feature name Portion of bispectrum Equation(s)† 

Bispectral invariant 
parameter      

Estimated over radial lines with slopes starting at 1º 
and ending at 45 º, in 1º increments 

         (
  {    }

  {    }
), where 

     ∑ (       ⌊  ⌋            ⌈  ⌉ )
⌊(

 

 
  )      ⁄ ⌋

   
 

(8) 
 
(9) 

Average magnitude   = each square portion of the non-redundant region 
of the bispectrum formed when each of the    and    
axes are divided into 10 equally sized sub-bands 
between 100 and 2600 Hz (55 subregions in total) 

 

 
 ∑ |         |   

(10) 

Average magnitude 

  = the non-redundant region of the bispectrum 

 

 
 ∑ |         |   (11) 

Average power   

 
 ∑ |         |

 
   (12) 

Normalized entropy 
 ∑       

|         |

∑ |         | 
   

(13) 

Normalized squared 
entropy 

 ∑       
|         |

 

∑ |         |
 

 
   

(14) 

Sum of logarithmic 
amplitudes ∑     |         |   

(15) 

Sum of logarithmic 
amplitudes 

Diagonal elements of the bispectrum 

∑     |       |  
(16) 

First-order moment of 
the logarithmic 
amplitudes 

∑      |       |  
(17) 

Second-order moment 
of the logarithmic 
amplitudes 

∑      
      |       |  

(18) 

Phase entropy 

  = the non-redundant region of the bispectrum 

∑         (     ) , where 

      
 

 
∑  (                ) , and 

   { |    
   

 
      

       

 
}  

(19) 
(20) 
(21) 

Median bifrequency The frequency at which the area under the bispectrum is equal on both sides; estimated for both bispectral frequencies 
according to the algorithm in [10]. 

†            estimated bispectrum at frequency    and   ;     an arbitrary two-dimensional region of the bispectrum over the    and    axes;    number of discrete points in region  . 

TABLE III.  THE NUMBER OF FEATURES TO PASS EACH HYPOTHESIS TEST AND 

NUMBER OF FEATURES COMMONLY PASSED BY THE TESTS 

First t-test between 
AHI ≤ 5, AHI ≥ 30 

64  53 features 
pass both t-

tests 
 41 features 

pass all three 
tests 

Second t-test between 
AHI ≤ 10, AHI ≥ 20 

94 

ANOVA between AHI ≤ 5, 
10 ≤ AHI ≤ 25, AHI ≥ 30 

98 
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features derived from nose breathing, including its difference 
with mouth breathing (5 plus 10, respectively) is comparable; 
this makes it hard to reject recordings of nose breathing in 
favor of mouth breathing in the supine position. Overall, even 
though the greatest proportion of selected features originated 
from mouth breathing in the supine position (39%), the 
number of features derived from nose breathing in both 
patient positions, including its difference with mouth 
breathing (8 plus 11, respectively) is likewise comparable; 
this suggests that the diagnostic information provided by nose 
breathing, both on its own and when in tandem with mouth 
breathing, is valuable enough for it to remain a part of the 
recording procedure. 

None of the four combinations of recording maneuvers 
and patient positions (upright nose, upright mouth, supine 
nose, supine mouth) were without features that passed all 
three hypothesis tests, indicating that none of these recording 
combinations can be outright rejected. On the other hand, all 
difference features derived from certain breath phases of 
certain recording combinations, and all features derived from 
the expiration phase of nose breathing in the upright position 
did not pass all three hypothesis tests, indicating that these 
phase and recording combinations can be rejected; these 
cases are shaded in Table 4. In the former case, for example, 
no difference feature between supine and upright positions 
during mouth breathing passed all three hypothesis tests. 
Thus, the sound features derived from these specific 
combinations of respiratory phase, position, and breathing 
maneuver may be ignored in the Awake-OSA diagnostic 
technique [8–9]. 

Omitting the features derived from the above sources 
would enable the feature search algorithms employed in [10] 
to exhaustively search for larger feature subsets and would 
increase the likelihood that the floating search would 
encounter a combination of features with better overall 
classification accuracy. Furthermore, the fact that the 
majority of features originate from supine recordings 
suggests that breath sounds recorded while the patient is 
supine may contain the most relevant information for 
diagnosing OSA; a future study may perform a feature search 
and classification using breaths recorded exclusively in the 
supine position. In order to have a final conclusion on 
optimizing the recording protocol, however, one has to run 
classification on the subsets of the commonly selected 
features in this study and verify the above results by the 
classification accuracies for the desired groups of AHI. 
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TABLE IV.  THE NUMBER OF FEATURES TO PASS ALL THREE HYPOTHESIS TESTS GROUPED ACCORDING TO THE COMBINATION OF PATIENT BREATHING MANEUVER(S), PATIENT 

POSITION(S), AND BREATH PHASE THEY ORIGINATE FROM 

Feature Sources 

Patient breathing maneuver Nose minus mouth 
(both maneuvers) 

Totals for each position 
Nose Mouth 

Inspiration Expiration Inspiration Expiration Inspiration Expiration Inspiration Expiration 

Patient 
position 

Supine 5 (13%) 16 (39%) 10 (24%) 31 (76%) 

Inspiration Expiration 2 3 11 5 5 5 18 13 

Upright 1 (2%) 6 (15%) 1 (2%) 8 (19%) 

Inspiration Expiration 1 0 1 5 0 1 2 6 

Supine minus upright (both positions) 2 (5%) 0 (0%) 
— 

2 (5%) 

Inspiration Expiration 0 2 0 0 0 2 

Totals for each maneuver 8 (20%) 22 (54%) 11 (26%) 
41 (100%) 

Inspiration Expiration 3 5 12 10 5 6 
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