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Abstract— Surface-enhanced Raman spectroscopy (SERS)
has been a routine method used as an analytical tool to do
the quantitative analysis of materials. The difficulties mainly
come from the inherent instable backgrounds of Raman signals,
which unexpectedly increase the intensities of Raman spectra
and from the high dimension small sample number problem
of Raman data sets, which demands the ability of feature
extraction from the regression methods. Targeting at removing
the instable background meanwhile extracting the Raman peaks
and taking full use of the information of Raman peaks to
extract features, we design a new framework that combines new
continuum regression (NCR) with continuous wavelet transform
(CWT) to do the quantitative analysis of Raman spectra. The
experiment results show its performance beats the state of the
art methods.

I. INTRODUCTION

Relying on Raman scattering, Raman spectroscopy has

been regarded as one of the most sensitive techniques for

chemical analysis giving the unique spectral fingerprint of

every chemical compound. When the monochromatic laser

light interacts with molecular vibrations or other excitations,

the energy of the laser photons will be shifted upwards

or downwards. The shifts in energy are referred as Ra-

man frequencies or Raman shifts. A characteristic range

of Raman shifts, which give their unique spectral informa-

tion of a particular molecule, are collectively referred to

as the Raman spectrum [1]. With the development of the

SERS-nanoparticles, normally a silver or gold colloid or a

substrate containing silver or gold, which are designed to

enhance the inherently weak magnitude of Raman scattering,

surface-enhanced Raman spectroscopy (SERS) has been a

routine method used as an analytical tool in food industry,

pharmaceutical, chemical and biological community [2] to

investigate the composition of materials. It has been applied

by Cheung et al. [3] to quantify the banned food dye; by

Laiet al.[4] to analyze sulfa drugs; by Strickland and Batt

[5] to detect carbendazim and by Stokes et al. [6], Graham

and Faulds [7] and Zhang et al. [8] to detect DNA sequence.

It also has been used in the field of biomedical diagnostics,

especially in the application of cancer detection research [9],

[10], [11]. Antibody conjugated nanoparticles, which can be

attached to specific proteins in cancer cells, are injected into
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body. Cancer can be diagnosed by detecting large amount of

such nanoparticles gathered inside body.

In order to estimate the amount of the nanoparticles and so

the amount of receptor proteins in cancer cells, the so called

Quantitative Analysis of Raman Spectrum (QARS), which is

from intensities of the Raman spectrum of one compound to

determine the mixing concentration of each component, is

the key job. The mixture spectrum of a compound approxi-

mately equals to the summation of all the pure spectrum [9],

besides, within certain range of concentrations, the intensities

of Raman spectrum are approximately linearly related to

the concentration of each pure component [10]. Based on

these two properties, two QARS models are commonly used:

Direct Classical Least Squares (DCLS) and Multivariate

Calibration model (MC). Li et al. [14], [15] showed MC

and the state of the art MC methods, Partial least squares

regression (PLSR), are usually superior to DCLS, because

of the inherent instable problem of Raman spectra.

In reality, the Raman signals collected from Raman spec-

troscopy unavoidably contain background intensities, which

disturb the QARS. Li et al. [16] presented a continuous

wavelet transform (CWT) based PLSR method, which can

effectively extract Raman peaks (spectrum) and remove

backgrounds. From the feature extraction point of view,

PLSR assigns higher weights to the Raman shifts that have

both big variances of intensities and high correlations with

concentrations. But the proportions of two criteria in the

objective are fixed to be equal, which limits the flexibility

of the model. Continuum regression (CR) methods [17],

[18], [19] can adjust the proportions of two criteria and

assign weights to Raman shifts in a flexible way. In this

paper, a new framework combining CWT and NCR method

[19] for the first time is presented, which can effectively

solve the instable background problem of Raman spectra

and reasonably assign weights to all Raman shifts for the

QARS. The performance is better than CWT-PLSR, baseline

correction based PLSR and CR methods.

II. METHOD

In this section we will first introduce the MC model

and describe the objective functions of three latent variable

regression (LVR) methods; then list three CR methods and

discuss their flexibility of combining two criteria; in the end

explain the principles of peak extraction by using CWT and

describe the details of CWT based CR method.

A. Multivariate Calibration Model and LVR Methods

Based on the two properties of Raman spectrum mentioned

in section one, the MC model [14] can be used to learn
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the relation between the intensities of Raman spectra and

the concentrations of components: Y = XΘ + E, with the

N × Dx matrix X = [x1, ..., xN ]T representing N Raman

spectra of compounds, the N ×Dy matrix Y = [y
1
, ..., yN ]T

representing the ground truth mixing concentrations of Dy

pure components in each compound, Θ being the Dx ×
Dy matrix of coefficients need to be found and E being

the error matrix. Then given a new mixture spectrum x,

the concentrations of each component can be predicted as

ŷ
T = xT

Θ. Since normally N is much smaller than Dx,

LVR methods [20] are usually used to solve this high

dimensional, collinearity multivariate regression problem.

Variables of X (Raman shifts) are linearly combined into

the low dimensional latent variables (LVs) T = XW =
[t1, ..., tK ], with W = [w1, ..., wK ] are weights vectors;

then the regression is done between Y and T. To find W,

LVR methods have different objective functions. Principle

component regression (PCR) [21] maximizes variance of

LVs: maxwi
var(ti). Reduced-rank regression (RRR) [22]

maximizes the correlation between LVs and concentrations:

maxwi
||corr(ti, Y)||2. PLSR is to maximize covariance be-

tween LVs and concentrations:

max
wi

||cov(ti, Y)||2 = max
wi

||corr(ti, Y)||2var(ti), (1)

which is explained in [14], [15] as for both best represent-

ing spectra and best approximating concentration and is a

compromise between PCR and RRR.

B. Continuum Regression: Reasonably Using Raman Peaks

Similar to LVR methods, CR methods also need to find

the weights W and then latent variables T. But different with

PLSR, who fixes the proportions of var(ti) and corr(ti, Y)
in (1), CR methods combine both criteria in the objective

function with an adjustable weight parameter.

de Jong presented a PCovR method [17], whose objective

function is described as:

obj. min
T

α||X− TPx||
2 + (1− α)||Y− TPy||

2. (2)

When α = 0, it is RRR; when α = 1, it is PCR; when

0 < α < 1, it is a compromise between two. The limitations

are that it does not include PLSR and the objective function

is the summation of two criteria (explained in [17]).

Another CR method is called SCR [18] (or called canon-

ical ridge analysis in [23]), whose objective function is:

obj. max
wi

||cov(Xwi, Y)||2

(1− α)||Xwi||2 + α||wi||2
. (3)

When α = 0, it equals to RRR, when α = 1, it equals to

PLSR. The limitation of SCR is that it only compromises

between RRR and PLSR, it can not achieve PCR.

To overcomes both limitations, Li et al. [19] presented a

new continuum regression (NCR) method whose objective

function is:

obj. max
wi

[wT
i (XT X)1−αwi]

−1(wT
i XT YYT Xwi)

s.t. tTi tj = 0, i = 1, ...,K, j = 1, ..., i− 1.
(4)

When α = 0, it is RRR; when α = 1, it is PLS; when

α =∞, the portion of wT
i XT YYT Xwi can be ignored, and

it becomes PCR.

These different objective functions of LVR and CR meth-

ods decide the different weights they assign to Raman shifts

(RS). PCR gives more weights to the RS that have bigger

variances of the intensities. But these RS are not guarantied

to be the Raman peaks which should also be correlated with

concentrations. Random peaks or noisy peaks, instead of

weak Raman peaks, may get more weights. RRR gives more

weights to the RS that are more correlated with the concen-

trations. But it may ignore the main Raman peaks (peaks that

have high intensities), and give more weights to some weak

peaks or even background. PLSR gives higher weights to

the RS that have both big variances of intensities and high

correlations with concentrations, which are more likely to

be the positions of main Raman peaks. By controlling the

parameter α, CR methods can adjust the proportion of each

criterion in the objective. When the optimized α is found,

the weights are given to the RS in a reasonable way that

more important Raman peaks get more weights.

C. CWT: Raman Peaks Extraction

LVR and CR methods can not solve the inherent instable

background problem of Raman signals [16], which is mainly

because of the emission of fluorescence [24] and instrumental

factors [25]. Li et al. [16] presented a CWT-PLSR method

to solve the problem. CWT [26] is described as

C(a, b) =

∫
R

x(τ)ψa,b(τ)dτ, (5)

with x(τ) is one Raman signal, τ is the time variable, here

means different Raman shifts, ψa,b(τ) = 1
√

a
ψ( τ−b

a ) is any

scaled and translated wavelet function, a = 1, 2, ..., s is the

scale, b = 1, 2, ..., Dx is the translation, ψ(τ) is the mother

wavelet function and C(a, b) is the 2D matrix of wavelet

coefficients.

Li et al. [16] showed that if the baseline is assumed to be

slowly changing and monotonic in the peak support region,

the noises are random noises and the mother wavelet function

is an even function, after the CWT, the baseline and the

noises can be automatically removed. If the mother wavelet is

treated as a mask function, the integration in (5) is essentially

a pattern matching, and the coefficients C are scores that

measure how much the shapes of the signal matching to

the mask function with different scales, at each RS. For

peaks extraction purpose, Mexican hat function is chosen as

the mother wavelet, since it has the shape of a peak. Then

the positions at Raman peaks tend to have high scores and

backgrounds tend to have low scores. At smaller scales, the

scores measure the shape in narrow ranges; at bigger scales,

the scores measure the peak shape in wider ranges. So the

mean values of these scores along different scales will give

a robust estimation of the heights of peaks.

D. CWT-NCR

In order to take full use of the Raman peak information

and give reasonable weights to RS, we combine CWT
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and NCR into the CWT-NCR algorithm (summarized in

Algorithm 1), which includes training (modeling) part and

testing (predicting) part. Given training data: mixture Raman

signals X and mixing concentrations Y, maximum wavelet

scale s and CR components number K, the training part is:

1. For every Raman signal (each row of X), get its CWT

coefficients C in (5) with Mexican hat mother wavelet [27];

2. Calculate the average coefficients of C along the scale

dimension as Mean(C) = 1

s

∑s
a=1

C(a, b), and store them

in one row of matrix D;

3. Instead of using X, using D and Y to do NCR, whose

algorithm is described in [19] and return the matrix of

coefficients Θ;

Then given a testing Raman signal x, the testing part is:

1. Get the CWT coefficients c of x, and calculate its average

coefficients d;

2. Estimate the mixing concentrations y.

Algorithm 1 CWT-NCR Algorithm

Input: X, Y, x, K, s, α
Output: y

1: for i = 1 to N do

2: C = CWT (X(i, :), s);
3: D(i, :) = Mean(C);
4: end for

5: Θ = NCR(D, Y,K, α);
6: c = CWT (x, s);
7: d = Mean(c);
8: y = (d−Mean(D))Θ + Mean(Y);

III. EXPERIMENT

To evaluate the effectiveness of the new framework CWT-

NCR for quantitative analysis of Raman spectrum, in this

section, we compare seven methods PCR [21], RRR [22],

PLS2 [12], SIMPLS [13], PCovR [17], SCR [18] and NCR

[19], combined with CWT and two baseline correction

methods: linear programming baseline correction [28] and

iteratively curve-fitting baseline correction [29], testing on

three real Raman signal data sets.

A. Data Sets

The Raman signals are collected from the Raman spec-

troscopy with 20×, 0.4NA lens and 785nm laser wavelength.

Raman shifts range from -79.65cm−1 to 2071.80cm−1 with

1044 values. To avoid the influence of the strong inten-

sity from Rayleigh Scattering, from 1044 Raman shifts,

we extract 896 (71th-966th). All nano-tags are made from

54.67nm Au nano-particles, coated with dyes: DTTC and

Cresyl violet (CV) (in data set one); HITC and IR140 (in

data set two); DOTC, DTTC, HITC and IR140 (in data

set three). All pure nano-tag solutions are made with a

concentration of 1.1e10 nanotags/ml. Then with 11 mixing

volume ratios (shown in Fig. 1) we mix two pure nano-tags

solutions in the first two data sets, with 21 mixing volume

ratios {(25% : 25% : 25% : 25%), (20% : 25% : 25% :

25%), . . . , (0 : 25% : 25% : 25%), (25% : 20% : 25% :
25%), . . . , (25% : 25% : 25% : 0)}, we mix four pure

nano-tags solutions in the third data set, and get three groups

of mixture nano-tag solution samples. These mixing volume

ratios can be treated as relative concentrations of each pure

nano-tags. From each sample, 5 duplicate Raman signals are

collected, with 20s time interval. So for data set one and two,

we have 55 mixture signals, and for data set three, we have

105. In order to reduce the influence of instability of Raman

signals, we also get the average signals by taking average of

each 5 duplicates. These average signals are shown in Fig. 1.

B. Experiment Design

In order to evaluate the performance of each method, we

design a cross-validation method as follow: each average

signal of 5 duplicates is treated as the testing sample once

and all the other duplicate signals with different mixing ratios

are treated as training samples.

Root Mean Square Error (RMSE) is used as the crite-

rion for evaluating the prediction accuracy. It is defined

as: RMSE = (
∑N

i=1

∑Dy

j=1
(ŷi,j − yi,j)

2/NDy)1/2, with

ŷi,j and yi,j are the estimated ratio and ground truth ratio

respectively of the ith sample and the jth dye.

To maximize the performance of all methods, several

parameters needs to be optimized, including the polyno-

mial curve-fitting order of the baseline correction methods

pOrder, maximum wavelet scale numbers s, α of CR

methods, the component number of LVR and CR methods

K. Different values are tested (pOrder is from 3 to 10; s is

from 1 to 20; α = {0, 0.05, 0.1, 0.15, ..., 0.95, 1} for PCovR

and SCR; α = {0, 0.05, 0.1, 0.15, ..., 0.95, 1, 2, 4, 6, 8, 10}
for NCR; K is from 1 to 30), the one giving the lowest

RMSE is returned as the optimized parameter.

C. Results and Discussion

In this part, we show the RMSE corresponding to the

optimized parameters and the optimized component number

K in Table I. From columns of each data set, we can see

methods based on baseline correction methods are better than

without any preprocessing, methods based on CWT are better

than those based on baseline correction methods. From rows

of Table I we can see PLSR methods (PLS2 and SIMPLS) are

normally better PCR and RRR; SCR and PCovR are usually

better PLSR; NCR are the best. The results of CWT-NCR

are always the best.

IV. CONCLUSIONS

Raman spectroscopy has been regarded as one of the most

sensitive techniques that can provide the unique spectral

information of analytes. QARS has been the key job of

many biomedical applications. This paper presents a new

framework that combines CWT and NCR. The advantage

is it can effectively extracts the heights information of

Raman peaks, reasonably assigns weights to Raman peaks

and increases the predicting accuracy of the MC model. The

limitation of the framework is there are three parameters

need to be decided for each data set, which complicates the
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(c) Data set 3: DOTC-DTTC-HITC-IR140

Fig. 1: Average Raman signals and mixing volume ratios. D:C-90:10, for example, means the ratio of mixing volumes of DTTC and CV
is 90% : 10%.

TABLE I: The results are shown as: RMSE (K). Columns title ori means results without any preprocessing, bc1 is iteratively curve-fitting
baseline correction, bc2 is linear programming baseline correction, cwt is continuous wavelet transform.

Methods Data Set One Data Set Two Data Set Three
ori bc1 bc2 cwt ori bc1 bc2 cwt ori bc1 bc2 cwt

PCR 1.66(10) 1.60(19) 1.40(9) 1.41(3) 3.92(4) 3.06(3) 3.51(4) 3.48(16) 4.20(11) 2.81(14) 2.93(20) 2.72(9)

RRR 1.80(30) 1.66(28) 1.37(27) 1.39(3) 3.72(17) 3.06(8) 3.70(9) 3.21(13) 4.22(28) 3.15(22) 3.01(30) 2.82(24)

PLS2 1.67(5) 1.50(3) 1.28(3) 1.43(3) 4.06(9) 3.04(3) 3.46(4) 3.13(3) 4.22(11) 2.72(24) 2.75(21) 2.83(20)

SIM 1.68(5) 1.51(3) 1.26(3) 1.46(3) 4.05(4) 3.14(3) 3.49(4) 3.40(3) 4.18(11) 2.73(23) 2.77(21) 2.83(18)

PCovR 1.66(10) 1.53(30) 1.32(28) 1.41(3) 3.60(25) 3.06(3) 3.23(7) 2.55(16) 4.19(11) 2.81(14) 2.91(30) 2.68(9)

SCR 1.66(7) 1.50(3) 1.28(6) 1.34(3) 3.77(10) 3.04(3) 3.28(6) 3.00(9) 4.21(11) 2.72(30) 2.75(21) 2.67(16)

NCR 1.37(18) 1.30(18) 1.27(3) 1.21(3) 3.72(17) 3.03(3) 3.12(4) 2.49(24) 4.08(11) 2.70(19) 2.72(20) 2.66(19)

quantitative analysis. Our future work is to find good way to

decide those parameters.
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