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Abstract— We have developed a Monte-Carlo simulation
method to assess the performance of neuromagnetic imaging
systems using two kinds of performance metrics: A-prime
metric and spatial resolution. We compute these performance
metrics for virtual sensor systems having 80, 160, 320, and 640
sensors, and discuss how the system performance is improved,
depending on the number of sensors. We also compute these
metrics for existing whole-head MEG systems, MEGvisionTM

(Yokogawa Electric Corporation, Tokyo, Japan) that uses axial-
gradiometer sensors, and TRIUXTM (Elekta Corporate, Stock-
holm, Sweden) that uses planar-gradiometer and magnetometer
sensors. We discuss performance comparisons between these
significantly different systems.

I. INTRODUCTION

Electrophysiological activity of neurons in the cerebral

cortex generates tiny magnetic fields outside the scalp. Direct

non-invasive measurements of these neuronal activities in the

sub-millisecond time scale can be achieved with magnetoen-

cephalography (MEG)[1]. Modern MEG systems are capable

of whole-head coverage with simultaneous measurements

of more than 300 sensors. Such whole-head sensor arrays,

together with advanced signal processing algorithms, now

enable imaging of dynamic brain activity – referred to as

neuromagnetic imaging[2][3].

We have developed a Monte-Carlo simulation method to

assess the performance of neuromagnetic imaging systems.

The method uses two kinds of performance metrics based

on the signal-detection theory: A-prime metric and spatial

resolution. The A-prime metric represents imaging system’s

ability to detect multiple sources, and the spatial resolution

expresses system’s ability to discriminate closely-located two

sources.

Since these performance metrics depend on the locations

and orientations of sources, Monte-Carlo computer simula-

tion is needed in which these metrics are computed using

a large number of Monte-Carlo trials, each trial having

random source locations and orientations. A similar Monte-

Carlo simulation method was previously used for comparing

performances of imaging algorithms[4]. In this paper, perfor-

mances of various types of sensor hardware are compared,

with the imaging algorithm being fixed to the adaptive

beamformer algorithm[3][5], which is one of representative

algorithms in neuromagnetic imaging.

We compute these performance metrics for virtual sensor

systems having 80, 160, 320, and 640 sensors, and discuss

Authors are with the Department of Systems Design and Engineering,
Tokyo Metropolitan University, Asahigaoka 6-6, Hino, Tokyo 191-0065,
Japan.

K. Sekihara is a corresponding author ksekiha@sd.tmu.ac.jp.

how the system performance is improved, depending on

the number of sensors. We also compute these metrics

for existing whole-head MEG systems, and compare their

performances.

II. MONTE CARLO COMPUTER SIMULATION

A. Sensor Data Generation

In our Monte-Carlo computer simulation scheme, assum-

ing a sensor array geometry of which performance is to be

tested, the simulated sensor data are computed. Here, we

assume dipole sources with fixed orientations, and a two

orientation forward lead field is calculated using a single

spherical-shell model[6]. The source activity is projected,

through the lead field, to the sensor space to create signal

magnetic field. The Gaussian white noise with its standard

deviation equal to 50 fT is added to this signal magnetic field

to finally generate the simulated sensor data.

Multiple sources having a equal intensity are assumed,

and their locations are chosen randomly within the simulated

brain region in Fig. 1. As depicted in this figure, the center

of the brain region is 10.5 cm below the sensor located at

the center of the sensor array. A spherical region with the

outer radius of 8cm and the inner radius of 1cm is defined as

the brain region where the region more than 4cm below the

sphere center is excluded. One hundred Monte Carlo trials

4cm

1cm
8cm

10.5cm

Fig. 1. Simulated brain region assumed for Monte Carlo computer
simulation.

of simulated sensor data are generated, each with random

source locations and orientations.

B. Source Reconstruction and Local Peak Detection

The simulated brain region in Fig. 1 is segmented into 0.5-

cm voxels. Adaptive beamformer source reconstruction[3][5]

is performed and a source power map (the power of the

time courses at each voxel) is reconstructed at all voxel
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locations. The localization accuracy is assessed in the fol-

lowing manner. (1) If a voxel has a value higher than its

nearest three-dimensional neighbors, we determine that a

local peak exists at that voxel. (2) After all the local peak

locations are obtained, we test whether each local peak is

within a particular distance (d) from a true source location.

If a particular peak is within d from a true source location,

that source is labeled as a ”detected source”. If there is no

true source within d from the local peak, that local peak is

labeled as a ”false detection”. In this computer simulation d

is set at 0.75 cm (1.5×voxel size).

C. A-prime Metric

To derive the A-prime metric, we compute the hit rate

H , which is the ratio of the correct source detection. Let

us define the numbers of detected sources nD and that of

undetected sources nU . Noting that the relationship nD +

nU = nT where nT is the total number of true sources, the

hit rate H is computed using

H = 〈
nD

nD + nU
〉 =
〈nD〉

nT
, (1)

where 〈·〉 indicate the averaging across Monte Carlo trials.

Defining the number of false detections in each Monte Carlo

trial as nF , we compute the false-detection rate F using

F = 〈
nF

nD + nF
〉 = 〈

nF

nL
〉, (2)

where and nL is the number of total local peaks in each

Monte Carlo trial, and the relationship nL = nD + nF is

used. Note that the definition of the false-detection rate above

differs from that used in [4]1.

Once H and F are obtained, we can compute A-prime

metric, Ap, which is equal to the area under the ROC curve

for a pair of H and F [7]. The A-prime metric is given, as

the first order approximation, by2

Ap =
H − F

2
+

1

2
. (3)

We can obtain the plot of the A-prime metric with respect

to source intensity by repeating the procedure described

above with different source intensities. The resultant A-prime

plot expresses an ability of a given neuromagnetic imaging

system to detect multiple sources with different intensities.

D. Spatial Resolution

To compute spatial resolution, we assume two sources

having a, equal intensity with a fixed inter-source distance

∆, and examine the minimum distance in which the two

sources can be detected. The locations and orientations of

the two sources are randomly chosen in each Monte-Carlo

trial, and the A-prime metric is obtained using exactly the

same procedure described above. Here, the voxel size is

set at 0.2∆ when ∆ ≤ 2.5 cm, and it is fixed to 0.5 cm

when ∆ > 2.5 cm. The source-detection length d is set

1In [4], F is obtained using F = nF /(maximum number of nF ). The
resultant F becomes significantly different from that by Eq. (2).

2The second order approximation for computing A-prime is given in [7].

at 1.5×(voxel size), as mentioned previously. We repeat the

Monte Carlo simulation with different inter-source distances,

and obtain the plot of the A-prime metric versus the inter-

source distance. We then look for the source distance that

gives the A-prime metric equal to a certain value α (0.5 ≤
α ≤ 1), and define this value of the source distance to be the

spatial resolution of the imaging system for a given source

intensity. By repeating the whole procedure with various

source intensities, we obtain the plot of resolution versus

the intensity of the sources, the plot representing the spatial

resolution of the imaging system under assessment.

III. RESULTS OF COMPUTING PERFORMANCE

METRICS

A. Assumed Sensor Systems

Fig. 2. Virtual sensor arrays assumed in computer simulation. The top-
left, top-right, bottom-left, and bottom-right panels respectively show sensor
systems with 80, 160, 320, and 614 sensors. Sensors are aligned on a sphere
with 13 cm radius.

We assessed performances of four types of sensor systems

having 80, 160, 320, and 614 sensors. The sensors are aligned

on a surface of a sphere. We assume two kinds of spheres:

one having a 10 cm radius and the other having a 13 cm

radius. The sensor locations of the systems with the 13 cm

radius are shown in Fig. 2. As shown in this figure, three

quoters of the sphere surface are covered by sensors and the

sensors are aligned with an equal inter-sensor spacing. The

sensor is assumed to be a first-order axial gradiometer with

a 5-cm baseline.

B. Ability of Detecting Multiple Sources

Plots of the hit rate, the false detection rate, and the A-

prime metric with respect to source intensity were obtained

for the system with 160 sensors aligned on a sphere of a

13 cm radius. We assumed that the number of sources was

three. The results are presented in Fig. 3. Here the error

bars indicate the range of ±1 standard deviation. In this

figure, clear tendencies can be observed in which the hit rate

increases and the false-detection rate decreases as the source
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Fig. 3. (a) Plots of the hit rate, (b) the false detection rate, and (c) the
A-prime metric with respect to the source intensity for the system with 160
sensors aligned on a sphere of a 13 cm radius. (d) Plot of SNR of the
sensor data with respect to the source intensity. The number of sources was
assumed to be three, and the sensor noise standard deviation is assumed to
be 50 fT.

Fig. 4. A-prime metric versus source intensity for four different number
of sources. The system with 160 sensors aligned on a sphere of a 13 cm
radius was used.

intensity increases. Therefore, the A-prime metric increases

as source intensity increases. The relationship between the

source intensity and the signal-to-noise ratio (SNR) for the

sensor system with a 13 cm sphere radius and for a three-

source case is shown in Fig. 3(d). In our Monte Carlo

simulation, the source intensity is changed from 1 to 80 nAm.

Such source intensity corresponds to the SNR approximately

between 0.05 and 5 for the three-source case, and this is the

SNR range encountered in real-life MEG measurements.

A plots of the A-prime metric versus the source intensity

for four different number of sources are shown in Fig. 4. As

shown in this figure, the general tendency is that when the

number of sources increases, the A-prime metric decreases.

However, we can also see that, in the limit of strong source

intensity, the A-prime metric becomes close to one for all

four cases. Conversely, in the limit of low SNR, the A-

prime metric becomes close to zero for all four cases. We

also computed the A-prime metric for four different types of

sensor systems in Fig. 2. Here, the number of sources was

fixed at five. The results are shown in Fig. 5. These results

Fig. 5. A-prime metric versus source intensity for four different types of
sensor systems shown in Fig. 2. The number of sources was fixed at five.

express how the sensor-array ability to detect five sources

changes according to the number of sensors.

Fig. 6. Plot of the A-prime metric with respect to the inter-source distance.
The 160 sensor system with a 13 cm sphere radius was assumed and the
source intensity was set at 70 nAm.

C. Spatial Resolution

We next assessed the spatial resolution of four types of

sensor systems in Fig. 2. The plot of the A-prime metric

with respect to the inter-source distance is shown in Fig. 6

in which the 160 sensor system with a 13 cm sphere radius

was assumed and the source intensity was set at 70 nAm.

The figure shows that the A-prime metric decreases when

the inter-source distance of the two sources decreases. Ac-

cording to this plot, the spatial resolution can be determined

approximately to be 2.1 cm in this case with α = 0.75.

We repeated exactly the same procedure changing the

source intensity from 4 to 400 nAm, and obtained the plots

of the resolution with respect to the source intensity. The

resultant plots for four types of sensor systems are shown

in Fig. 7. In this figure, we also plot the results of sensor

arrays having the same sensor numbers on a sphere of a

10-cm radius. The results show that the spatial resolution

becomes high, when the source intensity becomes strong.

(i.e., when SNR becomes high.) Also, sensor systems with

larger number of sensors have higher spatial resolution. The

difference of the spatial resolution for different number of

sensors becomes large in a low SNR, and small in a high

SNR. The spatial resolution in a very high SNR situation may

be referred to as the asymptotic resolution, and the resolution

plot shows that the asymptotic resolution does not depend

on the number of sensors, and it depends only on the size
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Fig. 7. Spatial resolution with respect to source intensity for the 80, 160,
320, 614 sensor systems. The sensor-aligned sphere had a 10 cm radius
(upper panel) and 13 cm radius (lower panel). The sensor noise was assumed
to have a standard deviation of 50 fT.

of the sphere on which sensors are aligned. The asymptotic

resolution is approximately 1 cm for a system with a 13-cm

sphere, and it is close to 0.5 cm for a system with a 10-cm

sphere.

D. Performance Assessments of Existing Neuromagnetic

Sensor Systems

Fig. 8. A-prime metric for MEG visionTM and Elekta-Neuromag
TRIUXTM . The plots labeled ”Y”, ”EL-PG”, and ”EL-PG+M”, respec-
tively, indicate the plot for MEGvision, that for TRIUX in which only the
planar gradiometer sensors are used, and that for TRIUX in which all sensors
are used.

We computed the performance metrics of two types of ex-

isting neuromagnetic sensor systems. One is MEGvisionTM

(Yokogawa Electric Corporation, Tokyo, Japan), which has

160 sensors aligned on a helmet-shaped surface[8]. The sen-

sors are first-order axial gradiometers with a 5 cm baseline.

The other is Elekta-Neuromag TRIUXTM (Elekta Corporate,

Stockholm, Sweden), which has total 306 sensors consisting

of 204 planer gradiometers with a baseline of 1.4 cm and

102 magnetometers.

The plots of the A-prime metric are shown in Fig. 8, and

plots of spatial resolution are in Fig. 9. In these figures, The

plot labeled ”Y” indicates the results from MEGvisionTM.

The plot labeled ”EL-PG” indicates the results from TRIUX

in which only the planar gradiometer sensors are used, and

the plot labeled ”EL-PG+M”, indicates the plot from TRIUX

in which both the planar gradiometer and magnetometer

sensors are used.

Both results in Figs 8 and 9 show that the performance

of MEGvisionTM is almost the same as Elekta-Neuromag

TRIUXTM. However, if only the planar-gradiometer sensors

are used, the performance of TRIUXTM is considerably

lower than MEGvisionTM. We can show that this perfor-

mance difference is caused primarily by a short baseline of

the planar gradiometer sensors used in TRIUXTM.

Fig. 9. Spatial resolution for MEG visionTM and Elekta-Neuromag
TRIUXTM. The plots labeled ”Y”, ”EL-PG”, and ”EL-PG+M”, respec-
tively, indicate the plot for MEGvision, that for TRIUX in which only the
planar gradiometer sensors are used, and that for TRIUX in which all sensors
are used.
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