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Abstract— Finding correspondences between contour points
in consecutive frames is crucial for the left ventricular motion
analysis. In many medical applications, point correspondences
can be determined by using distinctive anatomical features,
called anatomical landmarks. However, in the case of cardiac
images, these landmarks are scarce and insufficient for the
registration. Several methods have been proposed using semi-
landmarks, but this may lead to incorrect correspondences.
This paper proposes and evaluates the performance of three
point matching algorithm. Results show that the matching by
resampling method leads to the best overall correspondences
and compares favorably with the performance of a state of the
art shape alignment algorithm [9].

I. INTRODUCTION
Point matching is a well-studied topic in computer vision

that aims to determine correspondences between specific
points in different images (or time frames). This task is often
required as a preliminary step in many applications, including
tracking, object recognition and image segmentation.

In most medical image problems, point correspondences
are necessary to perform anatomical registration. They can
be determined by using distinctive anatomical features, called
landmarks. In some cases, anatomical landmarks are easily
recognizable (either across patients or across time) and
determining the correspondences between them becomes a
relatively simple task. However, in the case of cardiac images
anatomical landmarks are scarce and insufficient for the
registration.

Even though tagged magnetic resonance (MR) images can
be used to obtain anatomical markers from the myocardium,
the clinical protocol only acquires these type of images
when local function needs to be assessed. This means that
the number of images available is significantly shorter than
normal MR images, particularly in healthy patients. A com-
mon approach in the literature [1] to perform anatomical
registration is to consider a set of semi-landmarks, which are
spatial points with no real (material) meaning. These semi-
landmarks usually describe a curve/shape that can be used
to establish point correspondences and image registration is
performed through shape alignment methods. However, there
is a major drawback in this approach since the trajectories
obtained from the semi-landmarks often do not describe the
actual cardiac motion.

This paper evaluates the accuracy of several point match-
ing algorithms. Knowing which approach better describes
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the trajectory of each (material) point of the endocardium
is essential to study the left ventricular motion. Four differ-
ent strategies are used to determine point correspondences
between the left ventricle (LV) in consecutive frames, in
MR images. A thorough evaluation of each method will give
insights into the best approach.

The paper is organized as follows. Section II gives an
overview of the state of the art methodologies. Section III
describes the problem and Sections IV-V describe the point
matching algorithms. Section VI shows the evaluation results
and, finally, Section VII concludes the paper.

II. RELATED WORK

Image registration is commonly used in LV segmenta-
tion/tracking problems to determine statistical models of
shape variability (known as active shape models (ASM) [5]).
The registration step is usually performed by applying a
shape alignment algorithm. Two consecutive contours can be
aligned by applying a transformation T (·) to one of them.
The transformation parameters and point correspondences
are usually determined by combining both into an energy
minimization framework [6]. The Iterative Closest Point
(ICP) algorithm, proposed by Besl and McKay [7], is one of
the simplest approaches to determine an affine transformation
that aligns the shapes. It computes the transformation by
alternately updating the transformation parameters and the
point correspondences until convergence. O’Brien et al. [8]
aligns the shapes into a common coordinate system by
simply removing translation between them. The authors state
that the scaling factor is captured by the ASM and that
rotational effects are not significant. Point matches are then
superimposed by re-sampling the shapes into a fixed number
of points. Alternatively, Tsai et al. [9] proposed an algorithm
that does not require point correspondences to align shapes.
Instead, they compute the affine transformation parameters
by minimizing an energy function based on binary images
delimited by the shapes.

III. PROBLEM STATEMENT

In this work, the LV endocardium contours are represented
by sets of points outlined in 2D+time MR images. In order
to obtain the trajectories of each point in time, the point
correspondences between consecutive frames need to be
known. The problem can be formally introduced as follows.
Let C(t) ∈ R2×N and C(t + 1) ∈ R2×M be two sets of
N points and M points, respectively, corresponding to two
consecutive contours. A point matching algorithm allows us
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to know the position of a point in C(t) in the next frame by
matching it to a point in C(t+ 1).

Point matches will be obtained in a pair-wise way, i.e., by
taking into account pairs of consecutive contours (e.g., C(t)
and C(t+ 1)). We assume that each contour can be densely-
sampled (e.g., by cubic-spline interpolation), so that they
can be considered continuous curves. Dense contours will be
denoted by C̃. Three different point matching algorithms are
proposed to determine the correspondences between points
in consecutive frames. These are described in the following
subsections. A fourth state of the art algorithm [9] will also
be used to compare with the proposed ones.

IV. PROPOSED ALGORITHMS

A. Matching by resampling

The first approach consists of determining correspon-
dences by simply applying a sampling algorithm that extracts
a set of points C ∈ R2×N from each contour at pre-defined
angle intervals ∆θ relative to the contour mass center o (see
Fig. 1). The angle interval, ∆θ, relates to the number of
sampling points N by

∆θ = θi − θi−1 =
2π

N
(1)

and each sampled point ci is obtained by intersecting the
contour in the following way

ci = o+ αi

[
cos θi
sin θi

]
(2)

where αi ∈ R+ : ci ∈ C̃. The initial angle was set to be
θ1 = 0.

Fig. 1. Resampling by angle ∆θ to the center o.

The same procedure is performed for two consecutive
contours C(t) and C(t+ 1). Point correspondences are then
straightforward by matching the points ci(t) to ci(t + 1),
i = 1, . . . , N .

B. Matching by motion correspondences

The second method is inspired by the point matching
algorithm described by Veenman et al. [10], which uses
a first order motion model to track multiple (independent)
moving points. In this work, we use a modified version of this
algorithm that works as follows. Consider a set of moving
points C(t) ∈ R2×N that describes the LV contour at time
frame t. Then consider a set of observation points from a

densely-sampled contour C̃(t + 1) ∈ R2×M (M � N ) at
t + 1. Let DN×M be a cost matrix where each entry dij is
the cost of matching the point ci(t) to observation cj(t+ 1)

dij = ||ci(t) + vi(t)− cj(t+ 1)||, (3)

where vi(t) = ci(t)−ci(t−1) is the first order motion model,
i.e. the velocity of each point. The best global matches
are determined using the Hungarian algorithm [11], which
minimizes the total cost (sum of all matching costs) under the
assumption that assignments must be a one-to-one mapping,
i.e., each point has one and only one correspondence. Fig.
2 shows an example of the trajectories obtained with this
matching algorithm.

Fig. 2. Point matching using a modified version of [10]. The black lines
represent the endocardium contours in 4 consecutive frames and the red
lines and dotes are the trajectories obtained from the matched points.

C. Matching by Nearest-Neighbor with correction

The third method begins by assigning correspondences
using the Nearest-Neighbor criterion (NNC), based on the
Euclidean distance between points. The NNC consists in
matching a point ci(t) of a contour C(t) ∈ R2×N to the
closest point, cj(t), of another contour, C̃(t + 1) ∈ R2×M

(M � N ), such that

||ci(t)− cj(t+ 1)|| < ||ci(t)− ck(t+ 1)|| , ∀ k 6= j. (4)

This leads to a new set, C(t+ 1), of N points from C̃(t+ 1)
that are matched to N points in C(t). However, successively
assigning the closest point may cause two points that were
initially apart to converge to the same trajectory. This is
not desirable, since it cannot happen with material points
from the endocardium. Therefore, after matching the points,
a correction algorithm is applied to obtain a better point
distribution in C(t+ 1).

The correction algorithm works as follows. Let us denote
cci(t) as a point from C(t+ 1) matched with ci(t) and let L
be the perimeter of C(t+1). Points cci(t) that need correction
are the ones that do not preserve one of the following spatial
distribution criteria

||cci(t) − cci−1(t)|| ≥ d1 ∧ ||cci(t) − cci+1(t)|| ≤ d2 (5)
||cci(t) − cci−1(t)|| ≤ d2 ∧ ||cci(t) − cci+1(t)|| ≥ d1 (6)

where

d1 = β
L

N
d2 = (2− β)

L

N
(7)

and β ∈ ]0, 1[. d1 and d2 determine the minimum and
maximum distance allowed between consecutive points in
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C(t+1), respectively. When (5) (or (6)) do not hold, it means
that cci(t) is too close to the previous (next) point or too far
from the next (previous) one. The correction algorithm needs
to correct these points. The correction is done by iteratively
sliding them along C̃(t + 1) accordingly, until all points
meet the criteria. Fig. 3 shows an example of the correction
algorithm course of action.

Fig. 3. Correction of points matched by the NNC. The red dots are matched
points that do not preserve the spacial distribution criteria and the arrows
show the direction where the correction algorithm moves them along C̃(t+
1).

The parameter β determines how flexible the correction
algorithm is. As β → 1, the spatial distribution criteria
becomes more rigid and imposes that the points are equally
spaced by arc-length (d1 = d2 = L/N ), whereas β → 0
means that the criteria are more flexible and that the matched
points may be unevenly distributed along C(t+1). The value
that showed the best performance was β = 0.9.

V. SHAPE ALIGNMENT ALGORITHM

This section describes the fourth algorithm that uses a
state of the art shape alignment method [9], which will also
compared with the algorithms described Section IV.

D. Matching by binary alignment

This algorithm consists of aligning the two binary shapes
using the shape alignment algorithm described in [9] and then
matching points based on the NNC. The shape alignment
algorithm uses binary images delimited by each shape to de-
termine the transformation parameters that align them. This
means that there is no need for explicit point correspondences
prior to alignment.

Let IC(t)(x, y) be the binary image associated to a contour
C(t) and let ĨC(t+1)(x̃, ỹ) be the transformed binary image
associated to a contour C(t+ 1), where x̃

ỹ
1

 = T

 x
y
1

 (8)

and T is the transformation matrix. The algorithm consists
in minimizing the energy function

E =

∫∫
Ω

(IC(t) − ĨC(t+1))
2dA∫∫

Ω
(IC(t) + ĨC(t+1))2dA

(9)

using the gradient descent method (see [9] for details). Fig.
4 shows an example of the alignment of two binary images.

After obtaining the transformation parameters that aligns
the two images, we apply the transformation T to the contour
C(t + 1). Then, the points from C(t) are matched to points

from C(t + 1) using the NNC. Finally, the matched points
from C(t+1) are transformed back to the original coordinate
system (see Fig. 4).

Fig. 4. Point matching using the shape alignment algorithm described in
[9]. 1) the initial contours; 2) contours after the shape alignment; 3) point
matching using the NNC; and 4) matched points transformed back to the
original coordinates.

VI. EVALUATION
The evaluation of the point matching algorithms is per-

formed using 4 2D+time MR sequences from healthy pa-
tients, each with 20 frames. These sequences belong to
a database of 3D+time MR images publicly available in
[12]. This database also includes manual annotations of the
endocardium, which include the papillary and trabeculae
muscles (PTM) as part of the blood pool (i.e., within the
endocardium).

The algorithms are evaluated by comparing the trajectories
from the point matches with registration points from the
PTM, which are scarce but reliable material landmarks [2],
[3], [4]. The PTM were obtained by manually indicating
their location in each frame and were then projected to the
corresponding contour (see Fig. 5). A total of 6 PTM points
were used to evaluate the algorithms.

Quantification of the error in each frame is obtained as
follows. Let ck(1) and ck+1(1) be the points from C(1)
that are closest to the projected PTM point p(1) in the first
frame. The point, cp(t), that is used to evaluate the matching
algorithms is obtained by linear interpolation

cp(t) = ηck(t) + (1− η)ck+1(t), (10)

where η is a constant defined by

η =
||ck+1(1)− p(1)||
||ck(1)− ck+1(1)||

. (11)

The error is obtained by comparing the trajectories of the
cp(t) (according to the matching algorithm) and the trajecto-
ries of the p(t) (considered as ground truth). The error metric
e(t) used is based on the Euclidean distance between these
two points throughout time

e(t) =
||cp(t)− p(t)||

L(t)
(12)
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Fig. 5. Example of matches obtained using method A (green) and B (red) at frames 1, 4, 8, 15 and 20. The purple marker shows the tracked PTM point.

where L(t) is a normalization term that corresponds to the
perimeter of the contour at frame t. The normalization is
needed because the size of the LV changes significantly
throughout time and Euclidean distances would be smaller
during the systolic phases. Note that from (10), cp(1) = p(1),
which means that e(1) = 0 for all matching algorithms.

Fig. 6 shows the evolution of the average error metric (12)
over time for each of the four methods. During the first six
frames, all the methods show a similar increase in the error.
These frames correspond to the systolic phase, in which the
LV begins to contract significantly. The following 5 to 10
frames correspond to the relaxation of the LV (diastole). In
these frames, the performance of the method is significantly
different. Methods A, C and D remain with error values in
the range 0.010-0.025, while method B increases towards
values of 0.03-0.045. This can be explained by the following.
While method A ignores the natural rotation of the LV by
imposing fixed angles, this property also guarantees that
the points being track do not accumulate error throughout
time. On the opposite side, in method B correspondences
are computed successively as if they are independent moving
points, which allows them to continuously grow farther apart
from its original location. And although the matches obtained
with methods C and D can also accumulate error, they show
a more stable behavior.

Fig. 6. Average error over time for each matching algorithm.

From the analysis of Fig. 6, methods A and D show a
similar performance and achieve better results than the other
methods. Table I also confirms this by showing that the best
average error over all sequences and frames are achieved by
methods A and D, followed by methods C and B.

Fig. 5 illustrates an example comparing the trajectories
obtained with methods A (best) and B (worst).

TABLE I
AVERAGE ERROR ACROSS ALL SEQUENCES AND FRAMES.

Method A B C D
Error 0.015 0.030 0.019 0.016

VII. CONCLUSIONS

This paper evaluates the performance of 4 different point
matching algorithms. The results show that the proposed
method: A. Matching by resampling outperforms the remain-
ing methods, with an average error of 0.015, and achieves
similar results to the state of the art method proposed in
[9]. In future work, this performance evaluation should be
extended to further data and the results should be compared
to the information obtained from tagged-MRI.
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