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Abstract— Use of phase-contrast (PC) MRI in assessment of 

hemodynamics has significant clinical importance.  

In this paper we develop a novel approach to determination 

of hemodynamic pressures. 3D gradients of pressure obtained 

from Navier-Stokes equation are expanded into a series of 

orthogonal basis functions, and are subsequently projected 

onto an integrable subspace. Before the projection step 

however, a scheme is devised to eliminate the discontinuity at 

the vessel and image boundaries.  In terms of the computation 

time, the proposed approach significantly improves on previous 

iterative methods for pressure calculations. 

The method has been validated using computational fluid 

dynamic simulations and in-vitro MRI studies of stenotic flows.  
 

1. INTRODUCTION 

Phase contrast MRI is widely used to noninvasively 
measure blood velocity and flow in vivo [1]. PC-MRI can 
derive all three velocity components within a 3D imaged 
volume. The velocity field can then be used to obtain flow 
pattern wall shear stress, vascular compliance, blood 
pressure, and other hemodynamic information. 

Noninvasive calculation of the relative pressure field 
within the cardiovascular system has received significant 
attention in recent times. Relative pressure drop across a 
stenotic narrowing provides an important indication 
regarding the hemodynamic severity of a stenosis and is a 
significant physiologic parameter in planning a 
revascularization. Based on fluid mechanics of Newtonian 
and incompressible flow, pressure gradients can be derived 
from the 3-D velocity field by using the Navier-Stokes 
equation [2, 11]. Song [3] introduced an iterative solution to 
the pressure-Poisson equation for deriving pressure fields 
from Ultrafast CT cardiac images. Later, this method was 
extended and adopted to derivation of pressures from PC 
MRI by [2-4, 7-9]. Ebbers et al. [5] also presented a method 
to integrate pressure gradient (obtained from Navier-Stokes) 
but along user defined lines placed within a 3D phase 
contrast MRI dataset. In [7], the authors proposed a new 
solver to improve computation of cardiovascular relative 
pressure field using a multi-grid based solver with Galerkin 
coarsening. Wang et al. [6] proposed a new method for 
obtaining relative pressure maps using non-iterative harmonic 
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based algorithm. A significant limitation of the method 
however was that it was only applicable to 2D PC MRI in 2-
D axi-symmetric coordinates. In this paper, we significantly 
improve on [6] by extending the framework to 3D PC MRI 
and 3D coordinates. Reformulation of the method from axis-
symmetric to general non-axi-symmetric coordinates makes 
the method applicable to a variety of cases including in-vivo 
data. 

2. MATERIALS AND METHODS 

Navier-Stokes equation, the law of conservation of 
momentum, governs motion of Newtonian fluids. If we 
assume that viscosity is constant, Navier-Stokes equation can 
be written as: 
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where u(x,y,z,t) is the fluid vector velocity from  PC MRI 
, P is the scalar pressure,   is the density of the fluid and f is 
the body force. Generally in closed systems, the body forces 
are negligible and can be ignored.  

Due to the noise in PC-MRI velocity data, the pressure 
gradient field     

̂ =(  ̂   ̂    ̂) is not curl-free, and therefore it 

cannot be the true gradient of the scalar pressure field. An 
extremum principle is cast to find   such that    is the 
projection of   ̂ onto the curl-free subspace of integrable 
vector fields.  

2.1. Non-Iterative Harmonic-Based Orthogonal Projection 

The integrability condition requires: 
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The projection of   ̂(     )  (  ̂   ̂   ̂) onto an 

integrable subspace would then involve minimizing the 
following energy function: 
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The conventional approach [2-4,7-9], to minimizing D,  
involves derivation of the Euler-Lagrange equation which in 
this case is the pressure-Poisson equation, which is then 
iteratively solved subject to natural boundary conditions. In 
lieu of the iterative approach, and provided a series of 
orthogonal integrable basis function  (     ,  ̅) with  ̅ as 

the vector (          ) of spatial frequencies, the pressure   ̃ 

can be expanded as: 

  ̃   ∑  ̃ ( ̅)   (       )                 (4) 

Its gradients will have     
̃   ∑  ̃ ( ̅)   (       ), with 

   
   

  
  and        . The measured gradient can also be 

expanded as  
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Figure 2. Top-left: Pressure gradients in x direction obtained from 
Navier-Stokes equations shown for one axial slice in the stenotic phantom, 
black dots indicates boundary points. Top-right: Extrapolated pressure 
gradients outside of phantom boundary (equation (7)). Bottom: Resulting 
pressure gradients after data extrapolation in order to remove 
discontinuities at image boundaries. Data replication is according to 
equation (8).  

 

Figure  3. Schematic of the stenotic flow circuit used in MRI experiments. 
Within the phantom, flow goes from left to right. Note that the z 
coordinate runs along the phantom and x,y coordinates are axial to the 
phantom. 
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Following Frankot and chellappa [10], the coefficient of 

expansion of the projected pressure   ̃ in the integrable 

subspace, is related to   ̂   ̂       ̂  by: 

  ̃   
  ̂       ̂      ̂   
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Where    ∫ |  |
  

           . Therefore, by substituting 

  ̃( ̅) from equation (6) into equation (4), integrable pressure 
gradients and the correctly integrated pressure field will 
easily be obtained. Note that the pressure field is 
reconstructed in one-pass (with no iterations) using all of the 

available information in  ̂ ,  ̂  and  ̂ . In this paper, Fourier 

basis functions are adopted for  ( ̅) for convenience of 
computation using the fast Fourier Transform (FFT). 

The key differences between Frankot and Chellapa’s 
method [10] (which is about reconstructing surface shape 
from shading information) and our method are: (i) Since FFT 
needs to be applied to a 3D cubical domain, while PC 
velocity information is only available within the vessel 
lumen, the PC data needs to be extrapolated at the boundaries 
in order to remove discontinuities and (ii) FFT assumes that 
the data is periodic and, therefore, a discontinuity in the 
periodic extension of pressures will exist which once again 
needs to be removed.  

2.2 Data Extrapolation  

The projection of pressure gradient using Fourier 
transform does not work in presence of discontinuities. There 
are two kinds of discontinuities which affect the projections. 
First, is discontinuity at vessel or phantom walls. Vessel 
lumen does not cover the entire image domain; however, the 
whole of the image domain will be “projected” by this 
method. Second, a discontinuity exists at the image boundary 
since Fourier transform assumes that the data is periodic and 
a discontinuity in the periodic extension of data will exist. 
Figure (1) shows a schematic of vessel wall with vessel and 
image boundary discontinuities at    and    respectively. 

 

 

Figure 1. Illustration of the 
discontinuity problem at 

boundaries. The figure in 

bold illustrates a slice of 
physical vessel or flow 

phantom with 0 < r <   ( ) 

at a fixed z and    indicates 

imaging boundaries. 
 
 

To eliminate pressure discontinuity at vessel boundaries, 
first we transform each slice into the polar coordinate system, 
and we subsequently perform the following pressure 
assignment on empty space to keep pressure profile smooth 
and continuous along radial directions.  
 

 ̂(   )  {
 ̂(    )                       ( )      ( )
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                   (7) 

Following the assignment, polar coordinate is 
transformed back to the Cartesian coordinate system. To keep 
continuity in the periodic extension, in Cartesian coordinates, 
a symmetric extension of pressure can be adopted: 

 ̂(     )    ̂(      )    ̂(      )   ̂(      )=  ̂(       ) 

  ̂(       )   ̂(       )   ̂(        )             (8) 

If we assume imaging dimension [                ], after 
applying the above extension, new image dimensions will be 
                          which is 8 times bigger than 
original image dimensions. Figure 2 demonstrates 
components of the pressure gradient in the x direction before 
and after applying the above extensions in an axial slice 
proximal to stenosis. Through adoption of the stated 
approach in this section, discontinuities both at the vessel and 
image boundaries will be removed.  We note that no claim is 
made here that this is the best or most optimal approach to 
removal of discontinuities. However, the adopted approach is 
straight forward and fast. 

2.3. Flow Circuit 

Experiments were carried out using a closed loop flow 
system Figure (3). A MR compatible, computer controlled 
pump (CardioFlow 1000 programmable pump Shelley 
Medical Imaging Technologies, London, Ontario, Canada) 
with the capability to generate user-provided flow waveforms 
was used. An idealized rigid model of axisymmetric 
Gaussian shape was machined from transparent acrylic using 
conventional CNC machining methods initially aimed at 90% 
area occlusion. Later, the exact geometry was measured with 
high-resolution CT scans (0.22 × 0.22 × 0.625 mm3) and the 
area occlusion was found to be 87%. There were additional 
imperfections in fabrication of the phantom which caused the 
phantom geometry to not be completely axi-symmetric.  
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The stenosis diameter narrowed from 25.4 mm at the inlet 
to 9.04 mm at the throat. To ensure fully developed laminar 
flow at the entrance of the model, a 75-cm long straight rigid 
acrylic tube was placed upstream of the test section. The 
viscosity of the blood- mimicking solution utilized in the 
flow circuit was measured using a LVT Cone-Plate 
viscometer (Brookfield Labs., Stoughton, MA, USA) to be 
0.0043 Pa.s at 68°F. The density of the solution was 1035 
kg/m3.  

2.4. MRI Experiments 

Two separate flow rates were considered for the MRI 
experiments. In the first case, a flow rate of 13.2 ml/sec was 
used which corresponds to a Reynolds number (Re) [11] of 
160 which is encountered in the iliac artery. In the second 
case, a flow rate of 39.6 ml/sec was used. For our phantom, 
this flow rate corresponds to a Reynolds numbers of 480 and 
is the mean Reynolds number encountered in the in Carotids. 
Stenosis in these two arteries has a significant importance in 
clinical applications.  

Imaging was performed on a Philips Achieva 1.5T 
scanner (Philips Healthcare, Best, NL). To measure the 
velocity, a multi-slice 2D turbo gradient echo sequence was 
utilized that included a bipolar velocity encoding gradient in 
a single predetermined direction. Conventional Cartesian 
trajectory was chosen for image acquisition. The remaining 
sequence parameters were as follows: FOV = 96x96 mm, 
1.5x1.5 mm acquired in-plane resolution, 4 mm slice 
thickness, flip angle = 5, matrix size = 64x64, TR/TE = 
7.6/4.4 ms (for Reynolds number 480) and 8.0/5.0 ms (for 
Reynolds number 160). In order to ensure good signal 
quality, an 8-element phased-array knee coil was used. The 
phantom was placed at the center of the knee coil and images 
were acquired at or as close to the iso-center of the magnet as 
possible. With the z = 0 location corresponding to the center 
of the stenosis, axial slices were collected at locations both 
proximal and distal to the stenosis. 

2.5. CFD Simulations 

Computational Fluid Dynamic (CFD) simulations were 

carried out for two steady flow experiments using previously 

developed software [12]. For this purpose, the geometrical 

model of the 87% area occluded phantom was reconstructed 

from high-resolution CT (resolution 0.22 × 0.22 × 0.625 

mm3) and finite element grids with sufficient resolutions 

were generated. Five points were placed within the boundary 

layer region close to the walls. The computational grid 

contained about 8 million tetrahedral elements. Subsequently, 

the 3D unsteady Navier-Stokes equations were numerically 

solved using a finite element formulation. Since flows can 

become unsteady even for steady inflow conditions, the 

Navier-Stokes equation was solved using a time accurate 

explicit integration scheme. A fully developed parabolic 

velocity profile was prescribed at the model inlet and 

traction-free boundary conditions were applied at the outlet 

boundary. Figure 4 shows the velocity fields on mid-saggital 

plane of 87% area stenosis phantom for the two MRI 

experiments (Re=160 and Re =480). 

3. RESULTS 

Two types of comparisons were made: in one instance, the 

pressures derived from noise-corrupted CFD velocities using 

both the new 3D non-iterative pressure calculation technique 

as well as the iterative solution to pressure-poisson equation 

were compared with CFD simulated pressures. In a second 

instance, the pressures derived from in-vitro MRI studies 

were compared with CFD velocities.  In adding noise to 

CFD-simulated velocities, Gaussian distributed noise with 

zero mean and standard deviation of   
  was used. Figure 5 

shows CFD generated pressures (red line), the pressures 

calculated by the 3D iterative method (blue dotted line) and 

the pressures calculated by the 3D non-iterative method 

(black dotted line) for Reynolds number of 160 (left column) 

and Reynolds number of 480 (right column) for the case of 

       

Table 1 reports the relative error (R.E.) (equation (9)) in 

computing the pressure drop (PD) between the calculated 

pressures and CFD simulated pressures for a range of 

standard deviation for noise. As can be seen in table1, 

Harmonic based method is a bit more sensitive to noise 

power rather than iterative method, however results are all in 

acceptable range. 

     
           

     
           (9) 

To compare pressure calculation from CFD simulation to 

those from MRI experiments, CFD data were regridded to 

MRI resolution on a Cartesian uniform grid. Figure 6 shows 

comparison between 3D CFD simulated pressures and 3D 

calculated pressures by iterative and non-iterative techniques 

for Reynolds numbers of 160 and 480.  

As may be seen, the iterative method slightly 

underestimates the pressures relative to the non-iterative 

method. It should also be noted that due to pump 

imperfections and distal resistance in flow circuit as well as 

PC-MRI noise, the flow rates calculated at each cross section 

inside the phantom was 12% smaller than the programmed 

flow rates. Therefore, in reality, we expect the pressure drops 

from both the iterative and non-iterative techniques to have a 

smaller discrepancy with the CFD simulated pressures than 

what has been shown.  

Finally, for the in-vitro studies described here, the 

computational time for obtaining the relative pressures was 

4.83 seconds on a quad core 2.4 GHz CPU processor with 

8GB of memory for deriving the 3D pressure field from 50 

 

Figure 4. Steady flow simulations in the 87% stenosis phantom. Top: 

Geometry constructed from high resolution X-ray CT data. Middle: 
Details of computational grid on middle plane (observe boundary layer 

gridding). Bottom: Magnitude of velocities on mid-sagittal plane for 

different Reynolds numbers Re=160 and Re=480. 
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axial PC MRI slices. This is to be compared with 87.4 

seconds for the iterative approach on the same platform.  

 

 
Figure 5. Comparison of CFD generated pressures (red line) with those 
calculated with 3D non-iterative harmonic-based orthogonal projection 

(black dotted) and iterative solution to Pressure-Poisson equation (blue 

dotted line) using  noise corrupted CFD simulated velocities at Re=160 (left 
column) and Re=480 (right column).  In both cases, additive Gaussian noise 

with  =0.08 was added to the 3D CFD simulated velocity fields. Please 

note that only pressure along the centerline of the phantom is displayed. 

Also, note that the zero position is the center of the phantom with positive 
coordinates corresponding to flow distal to the stenosis and negative 

coordinates corresponding to flow proximal to the stenosis.  

 

 
Figure 6. Comparison of CFD simulated pressures (red line) with those 

calculated with the iterative method (black dotted line) and non-iterative 
method (Blue dotted line) using in-vitro PC-MRI data for constant flows 

with Reynolds numbers Re = 160 (top) and Re = 480 (bottom). Please note 

that only pressure along the centerline of the phantom has been displayed. 

 

   0.00 0.02 0.04 0.06 0.08 

Flow Regime   Method R.E. 

Re=160 
Iterative  8 % 7 % 6 % 8 % 2 % 

Non-iterative 12 % 11 % 7 % 0 % 3 % 

Re=480 
Iterative  7 % 7 % 9 % 8 % 4 % 

Non-iterative  14 % 13 % 10 % 5 % 2 % 

Table1. Relative error (R.E.) in comparing the pressure drop between the 
calculated and CFD simulated pressures for both iterative and non-iterative 
methods for Reynolds number 160 and 480. 

4. CONCLUSIONS 

In In this paper, we have introduced a new 3D non-iterative 

method which results in significant computational savings for 

calculation of intravascular pressures from phase-contrast 

MRI while providing good accuracy. The approach involves 

expanding the pressure gradient with a series of orthogonal 

basis functions and subsequently projecting them onto an 

integrable subspace in order to calculate the 3D relative 

pressure maps. Results from simulations and in-vitro 

phantom studies showed good agreement between the new 

method and the conventional iterative method and pressure 

maps directly generated by CFD.As demonstrated, when 

using Fourier basis functions, the algorithm applies three 3D 

FFT’s and one inverse 3D FFT to arrive at the results.  

Future work will involve application of the method on 

pulsatile stenotic flows in phantom experiments as well as in 

patients with atherosclerotic disease.  
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