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Abstract— Myocardial perfusion imaging by first-pass
contrast-enhanced magnetic resonance allows to asses the viabil-
ity of a tissue by the study of the contrast agent transit through
the cardiac chambers and myocardium. Since visual inspection
is difficult and may left aside critical temporal information, the
need of automatic quantitative analysis arises. We propose two
robust estimators of the parameters that quantify the perfusion
according to a prior pharmacokinetic model. The estimators
are based on the concentration of the contrast agent inside the
tissue and the blood.

Index Terms— Magnetic resonance, robust estimation, my-
ocardial perfusion imaging.

I. INTRODUCTION

Myocardial perfusion imaging by first-pass contrast-
enhanced magnetic resonance (MR) [1], [2] is obtained after
injection of a bolus of a contrast agent such as Gadolinium
(Gd-DTPA), which induces variations in the measured signal
(specifically the longitudinal relaxation time T1) across the
different tissues. The aim of this technique is to measure
the perfusion characteristics of each of the tissues of the
myocardium from the received temporal signal. This analysis
can be carried out in a qualitative way by visual inspec-
tion [3], semi-quantitative (using descriptive parameters) or
in a quantitative way [4] by estimating some parameters
linked to a prior pharmacokinetic model.

The analysis of the images by visual inspection is a diffi-
cult task mainly due to the dynamic nature of the perfusion.
If the temporal information of the sequence is neglected,
important knowledge about the characterization of the diffu-
sion inside the tissues may be left aside [2]. Alternatively,
quantitative analysis has the advantage of taking into account
the different sources of information, spatial and temporal. On
the other hand, it requires the estimation of some perfusion
parameters. This estimation is not a simple task when dealing
with MR data, and it becomes more complex in cardiac
imaging as opposed to static organs.

An automatic perfusion assessment process from MR data
involves three steps: (a) Image processing: heart, patient
and breathing motion must be corrected, and the regions of
interest (in this case the myocardium) have to be identified
and segmented; (b) Extraction of the concentration signals
from the MR signals. The concentration of the contrast
agent is inversely proportional to the variation of time T1
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inside the tissues. Thus, the concentration signals are to be
estimated from the T1 mapped from the intensity image using
the specific acquisition parameters; (c) Deconvolution of the
tissue transit signal or estimation of the parameters of the
prior pharmacokinetic model. First of all, it is necessary
to estimate the arterial input function (AIF), which gives a
measure of the concentration of the contrast agent in the
blood. The AIF is considered as the input signal to the
system.

In the present work we theoretically study the myocardial
perfusion pharmacokinetic model. We propose two robust
estimators of the parameters that quantify the perfusion
according to that model. The validation of the proposed
estimators is mainly done using synthetically generated data,
in order to avoid external issues that can bias or alter the
estimation (like the segmentation or the temporal alignment
of MR sequences).

II. ROBUST ESTIMATION OF PERFUSION PARAMETERS

A. Pharmacokinetic modeling of myocardial perfusion

Many models and methods have been proposed in lit-
erature in order to carry out an automatic analysis of the
perfusion [4]. However, they have not been totally adapted to
the specific needs of myocardial perfusion, since it presents
some constrains due to scanning time, heartbeats and breath-
ing movement that make the final images and models differ
from other common MR perfusion modalities, such as brain
or abdominal.

In the following sections we will work with two signals:
the concentration of the contrast agent in tissue, c(t), and
in blood, ca(t). We assume that (1) these concentrations are
feasible to be estimated from the T1 maps from the scanner;
(2) we are capable to properly measure the AIF that gives
the concentration of contrast agent in blood.

For the perfusion modeling, we also assume a compart-
mental model of the tissue, specifically the two-compartment
modeling (blood plasma and extravascular/extracellular
space) proposed in [4]. Inside each compartment (or kind
of tissue) the contrast distribution is assumed to be homo-
geneous. This implies a diffusion of the agent much faster
inside each compartment than its transfer among compart-
ments.

In the myocardium, where only one blood apportion exists,
the relation between the arterial and tissue concentration is
given by the following equation:

dc(t)

dt
= KT ca(t)−Kec(t) (1)
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where KT represents the kinetic rate constant of transfer
of the contrast agent flow from the vasculature into the
extravascular/extracellular space inside the myocardium and
Ke is the kinetic rate into the myocardial vasculature. Both
of them are related by parameter ve, which represents the
fractional volume of extravascular/extracellular space (or
flow extraction product), which is always bounded: 0 < ve <
1.

From eq. (1), the relation between c(t) and ca(t) can be
written as a convolution:

c(t) = ca(t) ∗ r(t). (2)

where signal r(t) is the impulse response of the tissue, that
can be easily derived from eq. (1):

r(t) = KT · e−Ketu(t) (3)

with u(t) the Heaviside step function.
The relation in eq. (2) can be written in the Fourier domain

as:

C(ω) = Ca(ω)R(ω) = Ca(ω)
KT

jω +Ke
(4)

All this modeling implies initial rest for signals ca(t) and
c(t).

B. Estimation of Fractional Volume ve

Perfusion parameters have been traditionally estimated
from eq. (4) via some deconvolution method such as:

R(ω) =
C(ω)

Ca(ω)

F−1

−→ r(t).

Despite of being theoretically correct in its continuous for-
mulation, this methodology may present serious drawbacks
due to the discrete nature of the measures. The inevitable
aliasing when sampling the temporal signal together with a
method based on the inverse Fourier transform may bias the
estimation or generate serious instabilities. Some authors try
to compensate the aliasing using interpolation methods like
splines [5]. However, note that the estimation of signal r(t)
is not necessary for perfusion quantification: only parameters
KT and Ke are relevant. Many studies, in fact, only need of
fractional volume ve = KT /Ke for perfusion assessment [4].

In this section we will first propose a method to estimate
the fractional volume ve. From eq. (4) we can calculate the
Fourier Transform at the origin:

C(0) = Ca(0)
KT

0 +Ke
= Ca(0) ve. (5)

From here we can write ve as

ve =
KT

Ke
=

[
C(ω)

Ca(ω)

]
ω=0

=

∫∞
0
c(t)dt∫∞

0
ca(t)dt

(6)

Thus, the volume ve can be calculated as a ratio between the
area below curves of concentration in tissue and in blood.

Since the measured data are discrete, the integrals are to be
approximated by sums.

ve =
KT

Ke
=

N∑
n=1

c[n]∆t

N∑
n=1

ca[n]∆t

=

N∑
n=1

c[n]

N∑
n=1

ca[n]

(7)

Note that, since the area below the AIF is the same for all
the pixels in the image, the denominator in eq. (7) can be
seen as a constant for all tissues. Volume ve will therefore
be proportional to the area of concentration in each tissue.
An error in the measure of the AIF will proportionally affect
all the tissues in the same way and the ratio of ve between
tissues will remain constant:

ve1
ve2

=

∫∞
0
c1(t)dt∫∞

0
ca(t)dt

·
∫∞
0
ca(t)dt∫∞

0
c2(t)dt

=

∫∞
0
c1(t)dt∫∞

0
c2(t)dt

On the other hand, an estimation based on integration (as
opposed to those methods based on deconvolution) will be
more robust to noise and measure errors.

C. Estimation of parameter Ke

To carry out a robust estimation of parameter Ke, we
integrate the convolution in eq. (2):∫ t

−∞
c(τ)dτ =

∫ t

−∞
ca(τ) ∗ r(τ)dτ = ca(t) ∗

∫ t

−∞
r(τ)dτ.

Since we assume initial rest for all the signals, the lower
limits can be changed to zero:∫ t

−∞
r(τ)dτ =

∫ t

0

KT e
−Keτu(τ)dτ

=
KT

Ke
u(t)− KT

Ke
e−Ketu(t)

= ve · u(t)− 1

Ke
r(t)

and then∫ t

−∞
c(τ)dτ = ca(t) ∗

(
ve · u(t)− 1

Ke
r(t)

)
= ca(t) ∗ (ve · u(t))− 1

Ke
ca(t) ∗ r(t)︸ ︷︷ ︸

c(t)

= ve

(∫ t

0

ca(τ)dτ

)
· u(t)− 1

Ke
c(t)

Even though the expression above lets us directly estimate
Ke, for the sake of robustness we have resorted to estimate
it as K̂e = arg min

∫∞
0
|f(t;Ke)|2dt with

f(t;Ke) =

∫ t

−∞
c(τ)dτ − ve

[∫ t

0

ca(τ)dτ

]
+

1

Ke
c(t)

After some algebra:

K̂e =

∫∞
0
c2(t)dt∫∞

0
c(t)

[
ve
∫ t
0
ca(τ)dτ −

∫ t
0
c(τ)dτ

]
dt

(8)

Note that once Ke and ve are estimated, the calculation of
KT is straightforward.
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Fig. 1. Synthetic concentration agent curves generated from the continuous
model. Sampling rate ∆t = 0.25 s.

Proposed LS
∆t = 0.25 ∆t = 1 ∆t = 0.25
ve Ke ve Ke ve Ke

Real 0.84 1.30 0.84 1.30 0.84 1.30
Est. (Noiseless) 0.84 1.30 0.84 1.34 0.73 1.14
Est. (SNR=25) 0.84 1.42 0.84 1.53 0.71 1.01
Est. (SNR=10) 0.85 1.11 0.83 1.38 0.74 1.14

TABLE I
ESTIMATION OF PERFUSION PARAMETERS FOR THE SYNTHETIC

EXPERIMENT.

III. EXPERIMENTS AND RESULTS

To test the performance of the proposed estimators, we
first carry out a synthetic experiment. In order to simulate the
concentration of the contrast agent, a continuous theoretical
model is considered, as proposed in [6]. Since both ca(t) and
c(t) are continuous-time processes in nature, the effect of the
aliasing over the estimation can be controlled. For the sake
of simplicity, the AIF is modeled as a Gamma distribution
(for the main lobe) and a decreasing exponential (for the
tail):

ca(t) = M1 ·
ta−1e−t/b

Γ(a)b2
u(t) +M2 ·

(
1− e−t/d

)
u(t) (9)

with a, b, d, the shape parameters and M1 and M2 scaling
constants. In our experiment we will work with M1 = 0.02,
a = 4, b = 2, c = 1 and M2 = max{ca(t)}/5. In order to
obtain c(t), the analytical convolution with r(t) is calculated:

c(t) = M1 · r(t) ·
γi
(
a, t
(
1
b −Ke

))
(1−Ke · b)a

+M2 ·Kt ·
(

1− e−Ket

Ke
− e−t − e−Ket

Ke − 1

)
(10)

with γi() the incomplete Gamma function. Discrete se-
quences are obtained by sampling both concentration signals
with Ke = 1.3, KT = 1.1, sampling rate ∆t = 0.25 and
t = 50 seconds. The signals are depicted in Fig. 1 (left).
Additive Gaussian noise with zero mean is added to the
signal to obtain a SNR=25, see Fig. 1 (right).

Parameters ve and Ke are estimated using the proposed
methods. Results are shown in Table I. For comparison, the
parameters are also estimated using a standard Least Squares
(LS)fitting over the model in eq. (2) To take into account
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Fig. 2. Evolution of the estimators with the sampling rate. Proposed method
(left) and Least Squares fitting (right).

Fig. 3. One slice of the MR myocardial perfusion phantom.

the robustness of the estimation to aliasing, the experiment
is repeated for ∆t = 1. In both cases, the estimation of
parameter ve, is robust to noise and aliasing, due to the
integral formulation. The second estimator is more sensitive
to the artifacts, due to the more complex formulation and
the difference of two related functions in the denominator
in eq. (8). Nevertheless, in both cases the estimation is
more accurate than the one carried out by LS. This methods
fails due to the aliasing existing in the discrete model when
assuming eq. (8).

Finally, in Fig. 2 both estimators are depicted for a wide
range of sampling rates (from 0.25s to 3s). As a quality
measure we have used the ratio between the estimated and
the real values: [v̂e/ve, K̂e/Ke]. The closer to 1 the better
the estimation. Note that v̂e is a very good estimator even for
large sampling rates. On the other hand, K̂e worsens as ∆t
grows, as expected. In any case, both estimators are much
more robust than the standard LS.

For a more realistic validation, we test now the estimators
with the 2D cardiac perfusion phantom proposed in [6].
A single coil sequence is simulated with correlated Rician
noise (σn = 15), partial volume effect (PVE), r1 = 4.5,
TR=2.7290 ms, ∆t = 0.75 s, 50 samples, KT = 0.4,
Ke = 0.9 for the tissue and KT = 0.5, Ke = 0.6 for the
scar. An illustration of the simulated sequence is shown in
Fig. 3.

The intensity curves are extracted for each pixel in blood
and tissue. In order to smooth the curves, a 4-class clustering
is carried out for the myocardium curves. Concentration
curves ct(t) and ca(t) are then estimated from the intensity
curves [4], [5]. Parameters ve and Ke are estimated for each
of the pixels in the myocardium wall and results are shown
in Fig. 4. Note that, although the scar is barely visible by
visual inspection in Fig. 3, it is now visible in the estimated
values. Note also that, due to the PVE, some extra class has
appeared in the outer border of the myocardium. Since it is
clearly an artifact, it can be neglected in further analysis. On
the other hand, the estimated values match the values used for
simulation. Only the Ke value in the scar is slightly biased.
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Fig. 5. One slice of the MR myocardial perfusion sequence. (∆t = 0.5, 10mm slices, 76 temporal samples, acquired in a Philips Intera 1.5T scanner
using fast field echo MAG).

Fig. 4. Estimation of perfusion parameters for the phantom: Fractional
volume estimation, v̂e (left) and parameter Ke (right) using a 4-class
clustering.
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Fig. 6. Intensity curves for the myocardial perfusion sequence after a
4-class clustering.

Finally, an experiment with real data is done. An MR
myocardial perfusion sequence is considered, with ∆t = 0.5,
3 slices of 10mm and 76 temporal samples, acquired in a
Philips Intera 1.5T scanner using fast field echo MAG. A
presaturation spatial pulse has been applied, and a flip angle
α = 50o, see Fig. 5.

First of all, temporal data have been processed to correct
the misalignment due to the breathing movement, following
the method in [7]. Secondly, the myocardium and the left
ventricle are segmented using a small modification of the
method proposed in [8]. The intensity curves for each pixel
in blood and tissue are traced and a 4-class clustering is
carried out again. Results are shown in Fig. 6.

Considering these 4 classes, volume ve is estimated for
each of the pixels in the myocardium wall. Results are shown
in Fig. 7 for 3 slices. There is an area in the upper side of
the second slice where the estimated ve shows a value larger
than the rest of the heart, being a possible indicator of a scar
area. In addition, note that values of the green and yellow
areas are very close, and they probably belong to the same
kind of tissue with slight variations.

IV. CONCLUSIONS

A new methodology to estimate the parameters of my-
ocardial perfusion images is proposed. The method has

Fig. 7. Fractional volume estimation, v̂e, for the 3 cardiac slices in the
myocardial perfusion sequence after a 4-class clustering

the following advantages: (1) since it is based on integral
formulation it is more robust than those methods based on
deconvolution; (2) It is robust against a wrong estimation
of the AIF: the volume ve, eq (7) is proportional to the area
below the c(t) curve. An error in the estimation of ca(t) will
equally bias the estimation of all the tissues. The method
has shown to be robust in different experiments based on
theoretical models, and it also shows promising results in
real data.
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