
An Active Method for Tracking Connectivity in Temporally Changing

Brain Networks

Kyle Q. Lepage1, Mark A. Kramer1 and ShiNung Ching2

Abstract— The inference of connectivity in brain networks
has typically been performed using passive measurements of
ongoing activity across recording sites. Passive measures of con-
nectivity are harder to interpret, however, in terms of causality
– how evoked activity in one region might induce activity in
another. To obviate this issue, recent work has proposed the use
of active stimulation in conjunction with network estimation.
By actively stimulating the network, more accurate information
can be gleaned regarding evoked connectivity. The assumption
in these previous works, however, was that the underlying
networks were static and do not change in time. Such an
assumption may be limiting in situations of clinical relevance,
where the introduction of a drug or of brain pathology, might
change the underlying networks structure. Here, an extension
of the evoked connectivity paradigm is introduced that enables
tracking networks that change in time.

I. INTRODUCTION

An emerging technique in neural medicine is the use of

brain stimulation [1], [2], [3], [4], [5]. Currently, these tech-

niques are used in an empirically-driven manner, whereby

different stimulation sites and parameters are tested until a

desired behavioral effect is achieved. An important step in

improving the use of these techniques will be incorporating

better knowledge of the underlying brain network connectiv-

ity and, specifically, how stimulating at one site may affect

neuronal activity in another, neighboring, location.

The prevailing methods for assessing neuronal connectiv-

ity are passive, that is, they do not involve perturbing the

brain. The result of these methods is a functional connectivity

network consisting of nodes (e.g., brain regions or electrodes)

and edges representing the strongest statistical associations

between nodes (see [6], [7] and the references contained

therein). Since these functional connectivity networks are

passive they do not necessarily clarify how stimulation at

a network region might affect surrounding regions, nor do

they disambiguate whether brain regions are truly coupled

or driven by a common source.

Brain stimulation provides a means to actively probe the

network, thus enabling disambiguation of causality from

simple correlation. Consider, for example, the situation il-

lustrated in Figure 1. Here, several nodes in a brain network

(as measured by, for instance, spatially disparate electrodes)

*M.A.K. and S.C. hold Career Awards at the Scientific Interface from
the Burroughs-Wellcome Fund

1K. Q. Lepage and M.A. Kramer are with the Department of Mathematics
and Statistics, Boston University, Boston, MA, USA kyle.lepage at
gmail.com; mak at math.bu.edu

2S. Ching is with the Department of Electrical and Systems Engineering,
Washington University in St. Louis, St. Louis, MO, USA shinung at
ese.wustl.edu

Fig. 1. Passive vs. Active network inference. (Left) Passive measurement
cannot disambiguate the origin of certain endogenous brain activity, for
example, ongoing oscillations. (Right) By using active stimulation, it is
possible to eluciated which regions evoke activity in others – so-called
evoked connectivity.

produce ongoing oscillations. By measuring passively and

using a metric such a correlation, one would infer a highly

connected network. Conversely, by stimulating, one could

identify which nodes actually evoked activity in other nodes.

To this end, recent work has introduced a method for actively

perturbing a brain network using stimulation in an effort

to elucidate evoked connectivity [8]. The evoked network

returned in that case was assumed to be static, i.e., the evoked

network did not change in time.

In this note we introduce a generalization to the method

of [8] that allows tracking of temporally changing evoked

brain networks. Such capability may be useful in clinical

situations in which the underlying neuronal network changes

in character due to the introduction of a drug, or through

some other endogenous physiological change. The paper

is organized as follows: In Section II we provide back-

ground on evoked connectivity in brain networks and present

mathematical preliminaries; In Section III we introduce the

generalization for temporal tracking and show its efficacy in

several simulation studies; finally, in Section IV, we discuss

potential applications and formulate conclusions.

II. BACKGROUND

The evoked network inference method of [8] uses a

Bayesian inferential framework to update a prior probability

mass function over all possible networks after each succes-

sive stimulation of a network node. The stimulus may be, for

example, an electrical current applied to the brain through

a stimulating electrode. The stimulus affects the neuronal

activity in the vicinity of the electrode, i.e, the node, and the

activity of any brain regions to which that node is connected.
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These changes in activity can be detected through electrode

recordings from connected regions.

In this setting, time-series from n nodes are obtained in a

recording epoch, leading to a network containing

Nedge = (n
2 − n)/2

undirected pairwise connections. The method for performing

inference over these connections is described in [8]. The

operational details are summarized below.

A. Stimulus and Detector Design

The method begins by defining a stimulus, s, which is a

vector over all Nedge edges where

(s)j =

{

1 if the edge involves a stimulated node
0 otherwise

The detector, intended to identifiy stimulated edges, is as-

sumed to possess some probability of false alarm, pfa|s
missed detection, pmd|s. Note that the detector will either

detect correspondence between two nodes that are stimulated

or will not; hence the detector response is also binary.

This formulation is, clearly, very general. The stimulus

vector s encodes which edges are stimulated, but does not

describe how that stimulation (or detection) is performed. For

the purposes of this paper, the method is operationalized by

assuming that (i) the stimulus is an electrical current impulse,

applied to the brain through an electrode; and (ii) the detector

is a spectral binary discriminator that compares the power

within a specific frequency band to a predfiend threshold

[8]. In general, however, quite abstract notions of evoked

networks are possible, depending on the definition of node,

stimulus and detector.

B. Active Network Inference

Prior to formulating the inferential procedure, consider the

following definitions:

Definition 1 (Network). A network consists of two vectors,

v, e, of dimension Nedge. The vector, v specifies all possible

pair-wise connections, where the jth element, vj specifies

a possible connection between two nodes. The vector, e,

contains elements (e)j where

(e)j =

{

1 if a connection is inferred in vj
0 otherwise

Definition 2 (Detector). The detector consists of a vector d

of dimension Nedge consisting of elements (d)j, where

(d)j =

{

1 if an evoked response is detected in vj
0 otherwise

Active network inference is performed by applying the

Chapman-Kolmogorov equation [9] to the problem of up-

dating the posterior probability distribution of the edges,

P(e(k)|d(k), s(k),Hk),

at stimulus-index k, where

Hk =
{

d
(a) | a < k

}

,

is the set of observations resulting from the past stimulations.
Note that the notation (k) is used to indicate the realization
of a particular vector or element at stimulation index k. It
follows that the edge posterior at stimulus index k can be
related to the posterior at stimulus index k− 1:

P
(

(e(k))j|(d
(k))j, (s

(k))j,Hk

)

∝

P
(

(d(k))j|(e
(k))j, (s

(k))j

)

×

1
∑

cj=0

P
(

(e(k))j|(e
(k−1))j = cj

)

×

P
(

(e(k−1))j = cj|(d
(k−1))j , (s

(k−1))j,Hk−1

)

,

(1)

for j = 1, . . . ,Nedge, noting that the binary variable

cj encodes whether a connection exists. In Eqn. (1), the

posterior at the previous stimulus index, k − 1, is up-

dated via multiplication of a user-specified one-step edge

update probability mass function, P
(

(e(k))j|(e
(k−1))j

)

, prior

to marginalization and multiplication by the likelihood,

P
(

(d(k))j|(e
(k))j, (s

(k))j
)

to yield the posterior probability

mass function of the edges at the current stimulus index, k.
It is assumed that the initial probability mass function,

P
(

e
(0)
)

, is set to .5 for all edges. The likelihood is expressed
in terms of the probability of missed detection, pmd|s, given
stimulus s, and the probability of false alarm, pfa|s, given
stimulus s,

pmd|s = P
(

(d(k))j = 0 | (e(k))j = 1, (s(k))j = s
)

, (2)

and

pfa|s = P
(

(d(k))j = 1 | (e(k))j = 0, (s(k))j = s
)

, (3)

where pmd|s, and pfa|s, are assumed to be the same for all
j. The likelihood can thus be written as:

P
(

(d
(k)

)j = d | (e(k)
)j, (s

(k)
)j = s

)

=






















d (1− pmd|s) + (1− d) pmd|s , (e(k))j = 1

d pfa|s + (1− d) (1− pfa|s) , (e(k))j = 0

C. Stimulation Policy

The selection of which node to stimulate is determined

on the basis of ‘node variance,’ defined as the sum of the

variances associated with each of the connection probabili-

ties. That is, if the ℓth edge connecting node i to the other

nodes exists with an estimated probability of p̂i,ℓ, the node

variance, vi, is computed according to,

vi =

Nnodes−1
∑

ℓ=1

p̂i,ℓ (1− p̂i,ℓ) , (4)

where

p̂i,ℓ = P
(

(e(k))j|(d
(k))j, (s

(k))j,Hk

)

. (5)

Here, j indexes the connection between node i and node

ℓ. Thus, the node variance summarizes the uncertainty of

the edges that would be involved in a stimulation if the

stimulation were applied to node i. The node to stimulate,

i∗, is then

i∗ = max
i
vi. (6)
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Fig. 2. Example of evoked response in 9 node Wilson-Cowan network.
Traces of ongoing oscillations in 8 nodes are shown. A stimulus is delivered
to the ninth node at t = 0. This subsequently evoked a response in two
nodes (the red and blue traces), indicated by the sharp upward deflection.
This response can be detected through a power spectral method, as described
in [8].

III. TRACKING TEMPORALLY CHANGING

NETWORKS

The one-step edge update probability mass function,

P
(

(e(k))j|(e
(k−1))j

)

,

in (1) controls how smooth the network estimates are as a

function of time (and, thus, of stimulation index). Through

an appropriate choice of function, it is possible to infer not

simply static evoked networks, but also networks that change

in time.

Consider the one-step edge update

P
(

(e(k))j = a|(e
(k−1))j = b

)

=
{

aǫ+ (1− a)(1− ǫ) , b = 0
a(1− ǫ) + (1− a)ǫ , b = 1 . (7)

The user-specified parameter, ǫ, controls the extent to which

previous estimates of an edge are thought to be accurate

during the current stimulus index, k. In other words, ǫ
determines the extent to which the network estimates remain

stable with respect to incoming detections. In [8], ǫ was set

to a value near zero under the assumption that the networks

being inferred did not change temporally. Here, we assume

the converse – that the underlying evoked networks could,

in fact, exhibit significant and sudden changes.

To demonstrate temporal tracking we perform a simulation

study in two settings: probabilistic networks and biophysical

neuronal networks.

A. Tracking in Biophysical Neuronal Networks

The first simulation study is performed using a network

of Wilson-Cowan mean field neuronal oscillators [10], [11].

In this model, the jth node is described by the nonlinear

differential equations:

ẋj = −xj+

(ke − rexj)F (c1xj − c2ij +Ce(x̄) + Pj(t))

+ bejuj(t) + w(t) (8)

i̇j = −ij+

(ki − rixj)F (c3xj − c4ij +Ci(x̄) + Qj(t))

+ bijuj(t), (9)

where (xj, ij) denote, respectively, the activity in excitatory

and inhibitory cell populations in a cortical macrocolumn.

The connectivity between macrocolumns arises through the

functions Ce(·) and Ci(·), where

x
T = [x1 x2 ... xN]

T. (10)

The specific coupling function considered is

Cx,i(x) = ks
∑

k∈N

ckxk, (11)

where N denotes the set of all nodes, ks is a coupling

coefficient and ck = 1 in the presence of a connection. The

term uj(t) is the exogenous input, used to locally stimulate

a given node in the network. Note that each parameter in

(9) corresponds to a neurophysiologic quantity, the details

of which can be found in [8].

Here, a nine node network is considered with parameter-

ization

c1 = 16, c2 = 12, c3 = 15, c4 = 3, ae = 1.3, ai = 2

θe = 4, kd = 2, θi = 3.7, re = ri = 1, (12)

ke = ki = 1, b
e
j = b

i
j = 1, Pj(t) = 1.25, Qj(t) = 0

and w(t) taken as a Gaussian random process of variance

0.1. As shown in Figure 2, with this parameterization, each

node produces ongoing oscillations. As in [8], we assume

that stimulations and detections take place every 2000ms,

and that the detector operates by identifying signals that

exhibit unexpectedly large power in high frequencies. The

underlying assumption is that such high frequency activity

is evoked only when a connection is present between the

stimulated and detected nodes. A schematic of the simulation

setup is shown in Figure 2.

Figure 3 illustrates the performance in a Monte Carlo

simulation when ǫ = 0.0005, the same value chosen in [8].

Here, the true network connectivity is generated randomly by

assigning each edge (ck in (11)) a value of 0 or 1 with equal

probability. After 50 stimulation epochs (50× 2000ms), the

network is randomly changed, i.e., edges are reset to 0 or

1 with equal probability. The correctness of the inferred

networks is measured in terms of the Jaccard error, defined

as

Jaccard Error = 1−
|ETrue ∩ EInferred|

|ETrue ∪ EInferred|
, (13)

where ETrue and EInferred are the collection of true and

inferred edges, respectively. The error takes the value 0
when the inferred network is correct and matches exactly the

true network. As shown in Figure 3, in the simulation, the

inferred connectivity converges to a value of 0.1, i.e., nearly

correct, within 50 stimulations. At t = 50 stimulations, the

underlying network changes, resulting in a large increase in

Jaccard error. The active method recovers as designed and

reconverges to a correct estimate of the new network within

50 simulations.
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Fig. 3. Jaccard error in simulation of 9-node Wilson-Cowan neuronal
oscillator network. The network estimate quickly converges to a small value,
indicating correct estimation. At t = 50 stimulations, the network changes
in structure, leading to a rapid increase in Jaccard error. The inference
scheme recovers and reconverges to a correct estimate of the new network.
Mean and standard error for n = 50 simulations.
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Fig. 4. Tracking a network with sudden connectivity change. The evoked
connectivity estimate converges rapidly and correctly, as evidenced by the
Jaccard error. At t = 200 stimulations, the underlying network changes
in structure, and the estimation scheme recovers quickly, again converging
to an accurate estimate of the new network. Mean of n = 100 simulation
shown.

B. Tracking in Probabilistic Networks

To investigate the performance in more detail and with a

larger scale, a probabilistic network of 33 nodes is consid-

ered. Neither the nodes nor the connections possess dynamics

– that is, a stimulation to a node evokes a ‘1’ or a ‘0’ in

neighboring nodes according to the presence or lack of a

connection (see [8] for complete details). Detections follow

specified distributions for pfa|s and pmd|s.

To study the performance of our scheme in this more

abstract setting, the following simulation is performed. First,

a network is generated where all except 10% are present (the

first ‘10%’ of s is set to ‘0’). Within 200 stimulations (see

Figure 4) the estimate converges accurately, as evidenced by

a low Jaccard error. At t = 200 stimulations the underlying

network structure changes, undergoing a reconnection of

the first 10% of edges, while simultaneously disconnecting

the last 40% of edges. This rather large structural change

leads to a dramatic jump in the Jaccard error. Nevertheless,

the adaptive scheme recovers and the estimate reconverges.

Figure 4 illustrates this recovery for two different values

of ǫ. The higher value of 1 × 10−3 leads to a more rapid

recovery, while the lower value of 1×10−6 exhibits a slower

recovery but, eventually, more accurate convergence (the

Jaccard error becomes 0). Both parameterizations drastically

outperform a naive scheme based on a sequential round-robin

approach, in which each node is stimulated according to

the repeating sequence 1, 2, ..., N . The round-robin scheme

exhibits significantly slower convergence and recovery as

measured by the maximum likelihood.

IV. CONCLUSIONS

In this note we have established the temporal tracking

capability for estimating evoked connectivity in brain net-

works. Our results show that evoked connectivity remains

effective, even if the underlying brain networks exhibit

sudden changes. The overall scheme is highly general and

can be adapted to a range of stimulation and recording

modalities. Translation of the methodlogy to experimental

applications is, naturally, a desired goal and is the subject of

ongoing and future work.
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