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Abstract— The partial epileptic seizures are often considered
to be caused by a wrong balance between inhibitory and
excitatory interneuron connections within a focal brain area.
These abnormal balances are likely to result in loss of functional
connectivities between remote brain structures, while functional
connectivities within the incriminated zone are enhanced. The
identification of the epileptic networks underlying these hyper-
synchronies are expected to contribute to a better understand-
ing of the brain mechanisms responsible for the development of
the seizures. In this objective, threshold strategies are commonly
applied, based on synchrony measurements computed from
recordings of the electrophysiologic brain activity. However,
such methods are reported to be prone to errors and false
alarms. In this paper, we propose a hidden Markov chain
modeling of the synchrony states with the aim to develop a
reliable machine learning methods for epileptic network infer-
ence. The method is applied on a real Stereo-EEG recording,
demonstrating consistent results with the clinical evaluations
and with the current knowledge on temporal lobe epilepsy.

Index Terms— Temporal Lobe Epilepsy, Stereo-EEG, Net-
work Inference, Bayesian Approach, Hidden Markov Chain

I. INTRODUCTION

Recent studies have put forward evidence that partial

epilepsies are occurring due to the hyper-excitable nature of

a focal brain area, known as the epileptogenic zone [1]. The

set of structures constitutive of this area is assumed to be

organized in an epileptic network responsible for the genesis

of paroxystic (ictal) events. This network takes successive

configurations throughout the evolution of the crisis [2], and

their identification would be helpful in understanding the role

of each of the incriminated structures in the development of

the epileptic process. The strength in connectivity between

two structures is evaluated from their electrophysiologic ac-

tivities provided by the EEG or by the Stereo-EEG (SEEG1).

A wide range of quantification methods can be found in the

literature [3], and the resulting quantities can be used to infer

the connections in the network [4]. In this paper, a bivariate

cross-correlation quantification using MODWT (Maximum

Overlap Discrete Wavelet Transform) has been chosen to

evaluate time-delayed relations between SEEG channels. The

efficiency of such frequency-dependent quantifications has

been demonstrated in the case of epilepsy [5], [6].
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1The SEEG modality, observed on bipolar montage, provides local
measurements of targeted brain structures activity by invasively placing
electrodes very near from the brain generators suspected to be involved
in the epileptic process.

Various thresholding strategies can be used to infer

graphs [7], [4]. The choice of the threshold has a high impact

on the resulting graph as it is very sensible to concurrent

activities and to the background noise correlation effect. The

robustness of such inference methods has to be improved,

with the objective to provide reliable and systematic network

identifications. In this paper, we take advantage of the time

persistence of the synchrony states, which is modeled using

a hidden Markov chain (HMC). HMC is a well known

model for robust signal segmentation and learning of data

sequences, and will be helpful in identifying stable synchrony

states during an epileptic event. A Bayesian framework is

adopted, in which the model parameters can be estimated

from the data. The method is here illustrated on a Temporal

Lobe Epilepsy (TLE) event recorded by means of SEEG at

the Neurology Unit of Nancy Hospital (France).

II. CONNECTIVITY MEASUREMENT AND LIKELIHOOD

A. Synchrony quantification

Depending on the phenomena that are to be emphasized,

the quantification method has to be chosen carefully, each

having their specificities in capturing particular kind of rela-

tions in the electrophysiologic data. In the case of TLE, linear

correlation-frequency dependent methods are eligible [5].

Indeed, these events are characterized by well identified

oscillating activities in particular frequency bands, from beta

rhythm to very fast oscillations, and usually show increased

frequency-dependent synchronies as the seizure progress [4].

Such behavior is illustrated in figure 1, where the harmonic

nature of the signal can be observed. On this figure, a phase

switching occurs between the two signals, a feature having its

importance as it is an indicator of a reconfiguration within

the epileptic network. Such delays in synchrony are to be

taken into account in the measurement method.

The synchrony quantification is carried out using the

maximal overlap discrete wavelet transform (MODWT) [6].

Let wjm and wjn be the jth level MODWT coefficients of

two stochastic processes with zero-mean, called sm and sn.

The MODWT estimator of the cross-correlation at scale j

considering a delay value of τ writes:

ρτ (t) =
cov(wjm[t], w

j
n[t− τ ])

√

var(wjm[t])var(wjn[t− τ ])
(1)

where cov(.) and var(.) refer to the empirical estimations

of covariance and variance respectively, [t] denotes the

considered time window, and the delay τ is allowed between

fixed bounds (−τb ≤ τ ≤ τb). Let τmax be the vector

containing the delays for which the cross-correlation is
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maximized for each time window. The associated maximum

cross-correlation values will be stored in the vector ρτmax .

The delay τ is commonly assumed to bear an information

on the causality of the activity of a structure on the second

one [6].
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Fig. 1. A jitter in synchronization appearing during the paroxystic ictal
event between hippocampus and entorhinal cortex (EC). Two phases in
synchrony can be observed: a first on where the hippocampus is leading
the EC with τ = 23ms, and a second phase where the EC is leading the
hippocampus with τ = 22ms.

B. Connectivity likelihood

From our experiments, the Beta distribution has shown

to provide well adapted bell shapes to fit the histograms

of MODWC cross-correlation of real SEEG recordings (see

fig. 2(a)&(b)). It can be noticed that such modeling is indeed

well appreciated to model various correlations quantities [8],

given the wide range of shapes that this distribution is able

to provide. The beta distribution is given by:

g(y) =
(1− y)α−1yβ−1

B(α, β)
(2)

where B(α, β) = Γ(α+β)
Γ(α)+Γ(β) . Crossing-values of the resulting

distributions can be seen as an estimation of the threshold

ρthr between synchrony and dyssynchrony cross-correlation

values. A thresholding strategy is however not adequate in

this context of uncertain biological data, since it is reported

to lead to false alarms and omissions [7], [4]. In this

work, we introduce a prior constraint of the synchrony time

persistence, modeled by a HMC.
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Fig. 2. Cross-correlations likelihoods: (a) shows the histogram of cross-
correlation values in absence of synchrony (state λ0), while (b) shows the
histogram of the values related to the synchrony states λi, i>0, with fitted
beta distributions.

III. NETWORK INFERENCE

Even though epilepsy is a chaotic event of hyper ex-

citability and hyper synchronizations between distant brain

structures, it can be reasonably assumed that some stable

pathways are followed by the flow of information from a

structure to another. A finite number of stable synchrony

configurations (and delays) between two brain regions will

be considered during an epileptic occurrence.

A. Hidden Markov Chain

Let X = (Xt)1≤t≤T be the stochastic process modeling

the state of synchrony between a couple of recorded chan-

nels. X is said to be hidden and takes its values in a finite

set Λ = {λ0, ..., λK}, λ0 being associated with the state of

dyssynchrony, and each λk1≤k≤K
being associated to a state

of synchrony with a delay τk. Y stands for the observation

process, with realization y = {(yt)}1≤t≤T , here given by

the synchrony measurements ρτ (eq. 1), so that we have

yt = {y
0
t , y

1
t , ..., y

K
t } = {ρ

τmax(t), ρτ1(t), ..., ρτK (t)}. X is

supposed to be Markovian and we wish to retrieve these

hidden states from the observation Y. The priors on X

are given by the initial probability πk(x1) = p(x1 = λk)
and by the (K + 1) × (K + 1) square transition matrix

aij = p(xt = λj |xt−1 = λi).
X is supposed to be homogeneous, and the i.i.d assump-

tion is made on the process Y conditionally on X . The

posterior probabilities at each time site P (xt|y) can then

be computed [9], and the decision on X is finally ob-

tained through the Maximal Posterior Mode criterion: x̂t =
argmaxxt P (xt|y)

B. Parameter Estimation

The parameters of the model are estimated using the ICE

procedure [10]. The set of parameters to estimate can be

drawn as: θ = {πk, aij , αk, βk, τk}.

1) Initialization:

• The initialization of the number of synchrony classes K

and of the related delay values τ
[0]
k is a critical issue. Indeed,

this step might greatly influence the resulting networks.

Depending on the pathological context and the incriminated

structures, the neurologists expertise is likely to be helpful

in setting relevant thresholds and delay boundaries. In

this work, these values are initialized empirically from the

vector τmax associated to the maximal cross-correlation

delay values (see section II-A). If a time delay brings

sufficiently high correlation quantifications over a sufficient

length of time (e.g. over 1s in this work), then it is set a

priori as an eligible synchrony state. An observation vector

yt is then computed from the equation (1) for each selected

synchrony class λk.

• Prior parameters on X are initialized empirically as,

e.g., π[0](i) = 1
K+1 , a

[0]
ii =

9
10 and a

[0]
ij =

1
10(K) for i 6= j.
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• K + 1 set of beta distribution parameters

{αk, βk}k∈{0,..,K} are to be initialized: an initial threshold

value ρ
[0]
thr is computed, being the mean plus twice the

standard deviation of the maximum cross-correlation ob-

servations ρτmax . Using this rough threshold, the full set

of observations y is classified in two arrays {yl}l∈{0,1}:

yit ∈ y0 if y
i
t < ρ

[0]
thr and yit ∈ y1 if y

i
t > ρ

[0]
thr. Empirical

mean {µ[0]}l∈{0,1} and variance {σ[0]}l∈{0,1} of these set

are computed. We then get preliminary estimated versions

of the Beta distribution parameters [11]:

α
[0]
l = µ

[0]
l (
µ
[0]
l (1− µ

[0]
l )

σ
[0]
l

− 1) (3)

β
[0]
l = (1− µ

[0]
l )(
µ
[0]
l (1− µ

[0]
l )

σ
[0]
l

− 1) (4)

The dyssynchrony beta distribution is then initialized

with the parameters {α0, β0} = {α
[0]
0 , β

[0]
0 }, while the K

synchrony beta distributions are initialized with the set of

parameters {αk, βk}k>0 = {α
[0]
1 , β

[0]
1 }.

2) ICE estimation: For each q in N
∗, q ≤ Q (Q is

the number of iteration set by the user), we compute the

following ICE estimation for the parameters update:

• Computation of the posterior probabilities:

ξ
[q]
t (k) = P (xt = λk|Y ) and Ψ

[q]
t (i, j) = P (xt =

λi, xt+1 = λj |Y) using the forward-backward probabilities.

Computation of a realization X̂ = {x̂t}1≤t≤T using these

posterior parameters [10].

• Equation for the maximization step:

- Estimation of the prior parameters:

π[q](k) = ξ
[q]
1 (k), a

[q]
ij =

∑T−1
t=1 Ψ

[q]
t (i, j)

∑T−1
t=1 ξ

[q]
t (i)

(5)

- Stochastic estimation of {α[q], β[q]}: {µ
[q]
k , σ

[q]
k }k∈{0,K}

are estimated using the stochastic realization X̂:

µ
[q]
k =

∑T

t=1 1(x̂t=λk)y
k,[q]
t

∑T

t=1 1(x̂t=λk)
(6)

σ
[q]
k =

∑T

t=1 1(x̂t=λk)(y
k,[q]
t − µ

[q]
k )
2

∑T

t=1 1(x̂t=λk)
(7)

We then get the estimated versions of the Beta distribution

parameters at iteration q from equations (3) and (4)

- Similarly, it is possible to compute a stochastic readjust-

ment of the delays τ
[q]
k from the realization X̂:

τ
[q]
k =

∑

n∈Jk τmax[n]

Nk
(8)

where Jk = {t|x̂t = λk}, and Nk the cardinal of this set.

IV. RESULTS AND DISCUSSION

The method has been applied on a SEEG recording of

a patient suffering from partial TLE, sampled at Fs=512Hz.

The considered intracranial recordings are related to the elec-

trodes implanted in the incriminated regions of the temporal

lobe: the hippocampus (B1-2), the entorhinal cortex (TB1-

2), the amygdala (A1-2) and the temporal pole (P1-2). The

observed activities lie mostly in the frequency band [8, 16]Hz

(wavelet level j = 5), thus being the chosen frequency

band for the identification task. A length of 3s has been

chosen for the MODWT cross-correlation sliding window

analysis, with an overlapping of 0.25s. The segmentation

has been performed on a time window of length [0− 200]s,

containing approximately 75s of ictal activity in the time

segment [52 − 128]s. The results are given on figure 3 for

the 4 channels considered, zoomed on the most informative

part between 40s and 140s, few significant synchronies being

found outside these bounds. Corresponding values of delays

are given in table I. By selecting a synchronization window

simultaneously on each of these 6 segmentation maps, a

connectivity graph is derived, reflecting the configuration of

the epileptic network for this specific time window. Three

time-dependent graphs associated to three well identified

phases of the seizure are given on figure 4.

TABLE I

DELAYS (IN MS) ESTIMATED FOR EACH SYNCHRONY STATES VS COUPLE

OF CHANNELS.

λ1 λ2 λ3
P1-2 - A1-2 29 - -

P1-2 - B1-2 −31 25 -

P1-2 - TB1-2 −11 - -

A1-2 - B1-2 0 33 -

A1-2 - TB1-2 −42 −15 -

B1-2 - TB1-2 −27 0 23
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Fig. 3. Results of segmentation for the 6 couples of channel.

Very few significant synchronies are observed before or

near after the ictal event. Some isolated short-term (< 3s)
time range synchronies are appearing between the analyzed

structures, mainly between temporal pole, amygdala and

hippocampus. This is relevant with the common observation

that the activity existing in the temporal lobe area are

severely attenuated at the proximity of a seizure [1]. This

also tends to prove the capacity of the method in bringing

in light the effective synchronies.
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(a) (b) (c)

Fig. 4. Connectivity graphs derived from the segmentation results. (a)
pre-ictal spikings ([49− 53]s). (b) end of rapid discharge ([64− 72]s). (c)
paroxystic event onset ([72− 76]s).

Around time instant 50s, high amplitudes pre-ictal spik-

ings are observed in the signal, resulting in the identification

of connectivities between hippocampus, entorhinal cortex

and temporal lobe, while amygdala seems to have no role

in this event (see fig. 4(a)). At the very beginning of the

following rapid discharge ([55 − 60]s), no synchronies are

observed, a property already demonstrated in a previous

work [2] (however based on a non-linear connectivity quan-

tification). While this rapid discharge activity progressively

evolves toward the paroxystic ictal event, gaining in ampli-

tude while decreasing in frequency, synchronies are mainly

observed between hippocampus and EC, as well as from

amygdala toward EC ([64− 72]s, see fig. 3 (B1-2 - TB1-2)

and fig. 4(b)), then generalizing to the whole set of structures.

Fully connected graphs are thus obtained at the onset of

the paroxystic event ([72 − 76]s, see fig. 4(c)). Along this

highly energetic event ([72−120]s), multiple reconfigurations

of the network then appear, in which the hippocampus is

highly involved. Such synchronies tend to disappear quickly

as the epileptic event reaches its term. Another interesting

feature, however having to be interpreted with caution, are

the estimated delays. Both the hippocampus and the EC

seem to have a major role in the development of the event

during the rapid discharges and in its evolution toward the

paroxystic event, as these structures show high connectivity

with mainly leading delays toward amygdala and temporal

pole during these ictal phases.

These observations are concordant with the conclusions

of the pre-surgical (electro-clinical) analysis of this specific

seizure, which also reports that these four structures are

found to be involved in the epileptic process, with an ictal

behavior typical of a medial temporal lobe seizure [12] (early

elementary gestual and oro-alimentary automatisms). Such

visual analysis of the rough SEEG signals however do not

allows for identification of the relation between structures,

thus of the underlying network. The method presented is

then likely to bring a higher refinement to the electro-clinical

evaluation. However, while being consistent by many aspects

with previous studies on partial epilepsy networks [2], the

process must be applied on a larger data set to further

evaluate its reliability. The fact that very few significant

synchronies are obtained outside the ictal event and the

epileptic zone can be taken as a first evidence of its relevance.

A second validation procedure will be to rely on the high

reproducibility of the TLE [13], by evaluating the capacity

of the method to reproduce a similar succession of network

patterns from an epileptic event to another within a given

patient.

Since the current knowledge on brain connectivity path-

ways are still partial, it is very difficult to establish if connec-

tions identified from the data are physiologically effective.

This issue may be tackled by exploiting in vitro/in vivo

studies along with tractographic data, bringing quantitative

information on the connections between distant cortical re-

gions. Some studies already confirmed the relation between

enthorinal cortex and the hippocampus region [14]. These

information could be advantageously introduced as priors in

the Bayesian framework described in this paper.

Finally, it has to be emphasized that the Bayesian approach

presented in this paper is not dependent of the chosen syn-

chrony quantification. Any (e.g. non-linear) quantification of

connectivity can be derived in this framework, offering a gen-

eral and systematic method for network inference whatever

are the pathological/functional relations to be highlighted.
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