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Abstract— Recent studies have investigated changes in the 

human brain network organization during the normal aging. A 

reduction of the connectivity between brain areas was 

demonstrated by combining neuroimaging technologies and 

graph theory. Clustering, characteristic path length and small-

worldness are key topological measures and they are widely 

used in literature. In this paper we propose a new methodology 

that combine advanced techniques of effective connectivity 

estimation, graph theoretical approach and classification by 

SVM method. EEG signals recording during rest condition 

from 20 young subjects and 20 mid-aged adults were studied. 

Partial Directed Coherence was computed by means of General 

Linear Kalman Filter and graph indexes were extracted from 

estimated patterns. At last small-worldness was used as feature 

for the SVM classifier. Results show that topological differences 

of brain networks exist between young and mid-aged adults: 

small-worldness is significantly different between the two 

populations and it can be used to classify the subjects with 

respect to age with an accuracy of 69%. 

 

I. INTRODUCTION 

In the last years, several studies demonstrated that by 
combining a variety of different imaging technologies 
(functional MRI, EEG, MEG) with graph theoretical analysis 
it is possible to characterize the topological properties of 
human brain networks. Among all the available graph 
indexes, clustering (overall integration), characteristic path 
length (local structure) and small-worldness, defined as ratio 
between them, represented some key topological metrics [1] 
describing the organization of information flows in a 
network. These metrics allowed to distinguish different 
classes of network such as regular, small-world, and random 
networks. In fact, a small-world network has a shorter path 
length than a regular network (characterized by high 
clustering and long path lengths) but a greater local 
interconnectivity than a random network (characterized by 
low clustering coefficient and short path lengths).  

Several anatomical, functional neuroimaging and electro-
physiological studies demonstrated that networks inferred 
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from healthy individuals are characterized by an optimal 
small-world organization [2, 3]. In contrast, brain pathology 
and changes in cerebral structures related to aging effects 
generally led to the estimation of connectivity patterns with 
characteristics more similar to ‘‘random’’ networks [4, 5, 6]. 

Different approaches based on graph theory have been 
used to describe the effects of  ageing on cerebral processes 
at rest or during the execution of cognitive tasks. In 
particular, the transition from childhood (8-12 years) to 
adulthood (21-26 years) is suggested to be characterized by a 
reduction of overall connectivity (decreased clustering and 
increased path length) [5]. Furthermore a description of the 
resting state networks during three different ages (children, 
mid-aged, elderly) was proposed by Zhu et al. [7] who 
provided their characterization also in terms of hemispheres 
asymmetry. 

The aim of this study was to propose a new methodology 
able to investigate differences in resting state networks 
related to subjects’ age by means of state of the art graph 
theory indexes. In particular we extracted some salient 
indexes synthesizing the architecture of the connectivity 
networks elicited during the rest condition by two 
populations of different ages (young and mid-aged adults). 
The indexes resulting statistically different between the two 
groups were used as features for classifying resting state 
patterns in relation to the age of the subject. The real novelty 
in respect to what found previously was that the proposed 
method is able to classify age-related differences at single 
subject level only by using indexes extracted form 1 minutes 
of eyes-closed condition. 

II. METHODS 

A. Partial Directed Coherence 

The PDC [8] is a full multivariate spectral measure, used 
to determine the directed influences between any given pair 
of signals in a multivariate data set. This estimator was 
demonstrated to be a frequency version of the concept of 
Granger causality [9]. 

It is possible to define PDC as: 
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where Λ(f) is a matrix containing the coefficients of 
associated Multivariate Autoregressive (MVAR) model.           

In this study we used the square formulation of PDC due 
to its higher accuracy and stability. 

The coefficients of MVAR model were estimated by 
means of General Linear Kalman Filter (GLKF), an 
algorithm developed for time-varying connectivity 
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estimation   but which can be also applied in the stationary 
case with an appropriate choice of the adaptation constants. 
We selected the GLKF approach for including all the 
electrodes in the estimation process without applying any a-
priori selection of cerebral sources. 

B. General Linear Kalman Filter 

In the GLKF an adaptation of the Kalman Filter to the 
case of multi-trial time series is provided. In particular, the 
equations at the basis of the algorithm are: 
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where n denotes the time sample, On represents the 
observation, Qn is the state process, Hn and Gn are the 
transition matrices and Vn and Wn are the additive noises. To 
obtain the connection with the time-varying MVAR it is 
necessary to make the following associations:  
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where K denotes the number of trials, whereas d is the 

dimension of the measured process. The details of the 

algorithm are provided in [10]. For the stationary case we 

select the two adaptation constants as follows  c1=0.001 and 

c2=0.001. 

C. Graph Theory Approach 

A graph is a mathematical object consisting in a set of 
vertices (or nodes) linked by means of edges (or connections) 
indicating the presence of some sort of interaction between 
the vertices. The structure of the investigated graph is 
described by means of an adjacency matrix G. When a 
directed edge exists from the node i to j, the corresponding 
entry of the adjacency matrix is Gij = 1, otherwise Gij = 0. 
Several indices based on the elements of such matrix can be 
extracted for the characterization of the main properties of 
investigated networks [11].  
Characteristic Path Length. The characteristic path length is 

the average shortest path length in the network, where the 

shortest path length between two nodes is the minimum 

number of edges that must be traversed to get from one node 

to another. It can be defined as follows: 
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where Li is the average distance between node 𝑖 and all other 

nodes and dij is the distance between node i and node j [12]. 

Clustering Coefficient. The clustering coefficient describes 

the intensity of interconnections between the neighbors of a 

node [13]. It is defined as the fraction of triangles around a 

node or the fraction of node’s neighbors that are neighbors 

of each other. The binary directed version of Clustering 

Coefficient is defined as follows [12]: 
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where ti represents the number of triangles involving node i, 

ki
in

 and ki
out

 are the number of incoming and outcoming 

edges of nodes i respectively and gij is the entry ij of 

adjacency matrix.  

Small-Worldness. A network G is defined as small-world 

network if LG > Lrand and CG >> Crand where LG and CG 

represent the characteristic path length and the clustering 

coefficient of a generic graph and Lrand and Crand represent 

the correspondent quantities for a random graph [1]. On the 

basis of this definition, a measure of small-worldness of a 

network can be introduced as follows: 
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Figure 1. Connectivity patterns elicited during the eyes-closed condition by 

one representative young subject (a) and by one representative mid-aged 

adults (b) in the frequency range of 1-30 Hz. Patterns are represented on a 
scalp model seen from above with the nose pointing the upper part of the 

page. Each arrow codes the connection between two electrodes. 
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 D.Support Vector Machine 

The Support Vector Machine (SVM) was first proposed by 

Vapnik and has since attracted a high degree of interest in 

the machine learning research community [14]. SVMs are 

supervised learning models used for classification and 

regression analysis. In order to perform a binary 

classification (two separate classes), this method needs of 

training data, each marked as belonging to one of two 

categories, for introducing a separating hyperplane: this 

hyperplane must maximize the margin between the two 

classes and it is known as the optimum separating 

hyperplane. The details of the method are provided in [15]. 

 E. Experimental design 

20 young healthy subjects (age: 23.8 ± 1.05 years; 10 
female) and 20 healthy mid-aged adults (age: 46.05 ± 5.27; 
10 female) took part in the study. EEG signals were recorded 
during rest condition with eyes closed for one minute. A 64-
channel system with a sampling frequency of 200 Hz 
(BrainAmp, Brainproducts GmbH, Germany) was used. 

F. Connectivity Analysis and Graph Indexes Classification  

After band-pass filtered (1-45 Hz + 50 Hz Notch filter), 
ocular artifacts were rejected by means of Independent 
Component Analysis. EEG traces were then segmented in 
epochs of 1s each in order to increase the robustness of 
methodologies applied in the following and residual artifacts 
were removed. Despite in this study we analyzed a stationary 
condition (resting state), we used GLKF for PDC 
computation to avoid the limitation on the number of signals 
included simultaneously in the stationary estimation 
approach.  The achieved estimations were averaged over 
frequency range of 1-30 Hz. Then a binary directed 
adjacency matrix was extracted from the connectivity matrix 
estimated for each subject by applying a threshold able to 
maintain the 20% of the stronger connections.  

In order to quantify the differences related to the network 
architecture of the two age-related groups of subjects, the 
graph indexes described above were extracted and the 
following steps were performed: 

1. Statistical comparison (two-sample Student’s t-test) for a 
significance level of 5% was computed between indexes 
from young and mid-aged subjects networks; 

2. Classification of extracted features by means of SVM 
classifier with quadratic kernel. 

The first step was performed for investigating which 
indexes were significantly different between the populations: 
this step was important for the right choose of the features to 
be used in classification process. For the second step a Leave 
One Out approach has been implemented to perform the 
classification. In particular, graph indexes extracted from 1 
subject were used for classifying him in one of the two 
groups, using the indexes achieved by the other 38 subjects 
(19 young and 19 mid-aged adults) as training data for SVM 
classifier. Each subject was tested singularly for 50 times. 
During each iteration, the algorithm returned score equal to 1 
for right classification and 0 otherwise. For each subject the 
classification performance was obtained among the iterations 
and then total, young and mid-aged performances were 
computed by performing the average of the performances 

among all subjects, young subjects and mid-aged adults 
respectively. 

III. RESULTS 

After the signal pre-processing, connectivity patterns 
were estimated by means advanced techniques of effective 
connectivity estimations and were averaged in the frequency 
range 1-30 Hz.  

Connectivity networks for two representative subjects 
belonging to the two different groups (young, mid-aged 
adults) are reported in Figure 1. Patterns are represented on a 
scalp model seen from above with the nose pointing to the 
upper part of the page. Each arrow codes the connection 
between two electrodes.  

Figure 1 shows that the network of young adult is 
characterized by a higher and more specific organization. 
Some electrodes (e.g. FT8, CP6, TP7, POz) showed an 
important role in the information flows of the network: they 
are characterized by a large number of short and long-range 
connections passing through them. Instead, mid-aged adult 
pattern was characterized by a more random topography: it is 
visible that the path length is greater than the one of young 
subject because there are few long-range connections and so 
the communication between spatially distant nodes goes 
through multiple edges.  

 

 

Figure 2. Bar diagram reporting the small-worldness mean value achieved 
for the two age-related groups. Two-sample t test for a significance level of 
5% was performed between the two populations: the symbol (*) highlights a 
significant difference between the two groups (p=0.003). 

Once extracted the correspondent adjacency matrix for 
each subject, graph indexes such as clustering, path length 
and small-worldness, were computed for extracting the 
topographic properties from the patterns.  

Bar diagram in figure 2 shows mean values of the small-
worldness achieved for the two groups. In order to evaluate if 
a significant difference exists between the two populations, a 
t-test for a significance level of 5% was performed on the 
small-worldness index. The statistical comparison reveals a 
significantly lower value of the index in the mid-aged group 
(p=0.003) when compared to the young group.  
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At last, small-worldness was used as a feature to classify 
each subject by means of SVM classifier. The total 
classification accuracy achieved by means of this process was 
69%: in particular 73% for young subject and 64 % for mid-
aged adults. 

IV. DISCUSSION 

 In this paper we described a methodology able to 
combine advanced techniques of effective connectivity 
estimation, graph theoretical approach and classification by 
SVM method. The application of GLKF for the connectivity 
estimation to EEG signals showed different brain 
organizations in young and mid-aged adults in the range 
frequency 1-30 Hz and graph theoretical approach was useful 
to quantify these changes. In particular, after the indexes 
extraction from the estimated patterns, statistical comparison 
between the two studied populations shows that the small-
worldness decrease significantly in mid-aged group: these 
results demonstrate that human brain networks are less well 
organized in middle age in respect to young age. The used 
algorithm for the classification is based on Leave One Out 
method and uses SVM classifier: with small-worldness as a 
feature for the classification, we obtained performance of 
69%.  

Results show that this approach allows to evaluate age-
related differences from different populations and in 
particular the main novelty of the proposed method is the 
ability to classify these differences at single subject level only 
by using indexes extracted from 1 minute of eyes-closed 
condition. Furthermore the described results suggest that the 
normal ageing impacts the topological configuration of 
resting-state networks towards a decrease of small-worldness 
in according with literature in which the transition from 
childhood to adulthood is described with a reduction of 
overall connectivity (decreased clustering and increased path 
length) [5]. 

V. CONCLUSION 

The methodological steps performed for the analysis 
purposed in this work, have been revealed as valid procedure 
for the description of differences related to the network 
architecture of the two age groups. Furthermore the 
implemented algorithm for the classification is characterized 
by good performance. However this methodology should be 

improved by means of the use of more features in the 
classification approach. 
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