
  

 
 

Abstract— Partial Directed Coherence (PDC) is a spectral 
multivariate estimator for effective connectivity, relying on the 
concept of Granger causality. Even if its original definition 
derived directly from information theory, two modifies were 
introduced in order to provide better physiological 
interpretations of the estimated networks: i) normalization of 
the estimator according to rows, ii) squared transformation. In 
the present paper we investigated the effect of PDC 
normalization on the performances achieved by applying the 
statistical validation process on investigated connectivity 
patterns under different conditions of Signal to Noise ratio 
(SNR) and amount of data available for the analysis. Results of 
the statistical analysis revealed an effect of PDC normalization 
only on the percentages of type I and type II errors occurred by 
using Shuffling procedure for the assessment of connectivity 
patterns. No effects of the PDC formulation resulted on the 
performances achieved during the validation process executed 
instead by means of Asymptotic Statistic approach. Moreover, 
the percentages of both false positives and false negatives 
committed by Asymptotic Statistic are always lower than those 
achieved by Shuffling procedure for each type of 
normalization. 
 

I. INTRODUCTION 

Effective connectivity between cerebral areas is defined 
as the temporal correlation between spatially remote 
neurophysiologic events and it could be estimated by using 
different methods both in time as well as in frequency 
domain based on bivariate or multivariate autoregressive 
models (MVAR) [1]–[3].  

Methodologies, such as Directed Transfer Function 
(DTF) [2] or Partial Directed Coherence (PDC) [3],  defined 
in frequency domain and based on multivariate approach 
have been demonstrated to be more efficient in estimating 
effective connectivity. In fact the bivariate approach is 
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affected by a high number of false positives due to the 
impossibility of the method in discarding a common effect on 
a couple of signals of a third one acquired simultaneously [4]. 
Among the multivariate spectral estimators, the PDC 
technique [3] is also of particular interest for several 
neuroscientific applications. In fact it allows to distinguish 
between direct and indirect connectivity flows in the 
estimated connectivity pattern better than DTF and its direct 
modified version, the dDTF [5].  

Even if the original definition of the PDC estimator 
derived directly from information theory, its formulation was 
modified in order to give a better physiological interpretation 
to the estimation results achieved on electrophysiological 
data. In particular, a new type of normalization, already used 
for DTF was introduced by dividing each estimated value of 
PDC for the root squared sums of all the elements of the 
relative row in order to avoid emphasis on the sinks of 
information due to column normalization. Moreover, in order 
to put the estimator directly in relation with the power density 
of the signals included in the process, a squared version has 
been introduced.  

The higher performances of squared PDC methods in 
respect to plain PDC have been already demonstrated in a 
simulation study which revealed its higher accuracy in the 
estimation of connectivity patterns on data characterized by 
different lengths and SNR and in distinction between direct 
and indirect paths [6]. Even if the new type of normalization 
has been introduced several years ago, a complete 
characterization of its effects on the accuracy of estimated 
networks has not been provided yet. 

For this reason, in the present paper, we proposed a 
simulation study aiming at the evaluation of the effects of the 
normalization on the performances achieved by applying the 
statistical validation process on estimated patterns, under 
different conditions of SNR and amount of data available for 
the analysis. In particular we used different sets of simulated 
data reproducing a predefined connectivity scheme. The 
assessing methods included in the study were the shuffling 
approach and the more recent asymptotic statistic method. 
The evaluation of performances was performed on the 
percentages of false positives and false negatives occurred 
during the validation process. 
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II. METHODS 

A.  Partial Directed Coherence 
The PDC [3] is a full multivariate spectral measure, used 

to determine the directed influences between pairs of signals 
in a multivariate data set. This estimator was demonstrated 
to be a frequency version of the concept of Granger causality 
[7]. It is possible to define PDC as 
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where Λij(f) represents the coefficient ij of the matrix of 
parameters in MVAR models, transformed in frequency 
domain. 

Even if this formulation derived directly from 
information theory, the original definition was modified in 
order to give a better physiological interpretation to the 
estimate results achieved on electrophysiological data. In 
particular, a new type of normalization, already used for 
DTF was introduced. Such normalization consisted in 
dividing each estimated value of PDC for the root squared 
sums of all elements of the relative row, obtaining the 
following definition:  
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Moreover, a squared formulation of PDC has been 
introduced and can be defined as follows for the two types of 
normalization: 
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The main difference with respect to the original formulation 
is in the interpretation of these estimators. Squared PDC can 
be put in relationship with the power density of the 
investigated signals and can be interpreted as the fraction of 
ith signal power density due to the jth measure. The higher 
performances of squared methods in respect to simple PDC 
have been already demonstrated in a simulation study [6]. 

B. Statistical Assessment of Connectivity Patterns 
Random correlation between signals induced by 

environmental noise or by chance can lead to the presence of 
spurious links in the connectivity estimation process. In order 
to assess the significance of estimated patterns, the value of 
effective connectivity for a given pair of signals and for each 
frequency, obtained by computing PDC, has to be statistically 
compared with a threshold level which is related to the lack 
of transmission between considered signals.  

Different approaches are actually available for 
reconstructing the null-case PDC distribution to be used in 
the statistical validation process. In this study we considered 
two among them: i) Shuffling procedure and ii) Asymptotic 
Statistic method. The Shuffling approach is a time-
consuming procedure which allows to reconstruct the PDC 
distribution in the null case by means of an empirical data-
driven process. It consists in iterating the PDC estimation on 
different surrogate data sets obtained by shuffling the original 
traces in order to disrupt the temporal relations between them 
[8]. Recently, a new approach based on the theoretical 
distribution of null-case PDC was introduced. Such 
Asymptotic Statistic method derived from the assumption 
that PDC estimator for the not-null hypothesis is 
asymptotically normally distributed, while it tends to a χ2-
distribution in the null case [9], [10]. Thus, the null-case 
distribution of PDC is derived from the acquired signals by 
applying a Monte Carlo method able to reshape the data on a 
χ2-distribution to be used in the assessment process. Details 
about the method can be found in Takahashi et al. [10]. 

 
Fig. 1 – Connectivity model imposed in the generation of testing dataset. 
x1,…, x4 represent the signals of four cerebral regions of interest. aij and τij 
represent the strength of the imposed connection the delay in transmission 
applied between nodes i and j. The values chosen for connections strength 
are a12=0.5, a13=0.4 a14=0.2, a23=0.08, while the values set for delays in 
transmission are τ12=10s, τ13=10s, τ14=5s, τ23=20s at sampling rate of 
200Hz. The chosen values are those typical of EEG signals. 

The statistical validation process has to be applied on 
each couple of signals for each direction and for each 
frequency sample. This necessity leads to the execution of a 
high number of simultaneous univariate statistical tests with 
evident consequences in the occurrence of type I errors. The 
statistical theory provides several techniques that could be 
usefully applied in the context of the assessment of 
connectivity patterns in order to avoid the occurrence of 
false positives. In this study we considered the traditional 
Bonferroni approach [11] and the recently introduced False 
Discovery Rate criterion [12]. 

C. The Simulation Study 
The simulation study was composed by the following 

steps: 
1) Generation of several sets of test signals simulating 
activations at scalp or cortical levels. These datasets were 
generated in order to fit a predefined connectivity model 
reported in Fig.1 and to respect imposed levels of some 
factors. These factors were the SNR (factor SNR: 0.1, 1, 3, 
5, 10) and the total length of the data (factor LENGTH: 15s, 
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50s, 100s, 150s). The chosen values are those typical of EEG 
recordings. 
2) Estimation of the cortical connectivity patterns obtained 
in different conditions of SNR and data LENGTH by means 
of sPDCcol (squared PDC normalized according to columns), 
sPDCrow (squared PDC normalized according to rows) and 
sPDCnn (squared PDC not normalized). The normalization 
was applied before and after the validation process (factor 
TYPENORM: NN (not normalized), NRB (normalization 
according to rows before validation), NRA (normalization 
according to rows after validation), NCB (normalization 
according to columns before validation), NCA 
(normalization according to columns after validation)). 
3) Application of shuffling and asymptotic statistic 
procedures for assessing significance of estimated 
connectivity patterns for a significance level of 5% in three 
different cases: no correction, corrected for multiple 
comparisons by means of False Discovery Rate (FDR) and 
Bonferroni adjustments (factor CORRECTION). 
4) Computation of the total percentage of false positives and 
false negatives occurred in the assessment of significance of 
connectivity patterns for all the considered factors.  
5) Statistical analysis on percentage of both false positives 
and negatives by means of ANOVA for repeated measures 
in order to evaluate the effects of some factors (SNR, 
LENGTH, CORRECTION, NORMTYPE) on the 
performances achieved by means of the two validation 
methods separately. 

 
Fig. 2 – Results of the ANOVA analysis computed considering as 
dependent variable the percentage of False Positives occurred during the 
assessment process computed by means of Asymptotic Statistic method 
(panel a) and Shuffling procedure (panel b). Plot of means with respect to 
the interaction between SNR, CORRECTION and NORMTYPE factors.  

III. RESULTS 

A MVAR model of order 16 was fitted to each set of 
simulated data. The procedure of signal generation and PDC 

estimation was repeated 100 times for each level of factors 
SNR, LENGTH, NORMTYPE and CORRECTION in order 
to increase the robustness of the following statistical analysis. 

Results of four-way ANOVA computed by setting as 
dependent variable the percentage of false positives revealed 
a strong statistical influence of the main factors SNR           
(F = 46.92, p < 0.0001), LENGTH (F = 111.57, p < 0.0001), 
and CORRECTION (F=12685, p<0.0001), as well as their 
interactions SNR x LENGTH (F=6.38, p<0.0001), SNR x 
CORRECTION (F=36, p<0.0001),  LENGTH x 
CORRECTION (F=91, p<0.0001) on the percentages of 
false positives occurred during the statistical assessment 
performed by means of Asymptotic Statistic. No effects of 
the factor NORMTYPE and its interactions with other 
factors were highlighted by the ANOVA analysis as 
confirmed by Fig.2a and Fig 3a.  

 
Fig. 3 – Results of the ANOVA analysis computed considering as 
dependent variable the percentage of False Positives occurred during the 
assessment process computed by means of Asymptotic Statistic (panel a) 
and Shuffling (panel b). Plot of means with respect to the interaction 
between LENGTH, CORRECTION and NORMTYPE factors. 

In particular we reported the results of the ANOVA 
analysis performed on the percentages of false positives 
committed by Asymptotic Statistic approach. In particular 
we reported plot of means with respect to the interaction 
between SNR, CORRECTION and NORMTYPE factors in 
Fig.2a and LENGTH, CORRECTION and NORMTYPE 
factors in Fig.3a. The percentages of false positives 
remained below 5% for all the normalization types, all the 
SNR, data length and corrections. In particular we found a 
decrease of such percentage related to the decrease of SNR 
and to the increase of Data Length and severity of the 
correction for multiple comparisons. No differences between 
the different types of normalization were highlighted. 

Results of four-way ANOVA computed by setting as 
dependent variable the percentage of false positives revealed 
a strong statistical influence of the main factors NORM (F = 
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1232, p < 0.00001), SNR (F = 3245.8, p < 0.0001), 
LENGTH (F = 402.62, p < 0.0001), and CORRECTION 
(F=23756, p<0.0001), as well as their interactions NORM x 
SNR (F = 169.21, p < 0.00001), NORM x LENGTH (F = 
47.05, p < 0.00001), SNR x LENGTH (F=10.4, p<0.0001), 
NORM x CORRECTION (F=427.46, p<0.0001) on the 
percentages of false positives occurred during the statistical 
assessment performed by means of Shuffling procedure.  
In Fig.2b and Fig.3b we reported the results of the ANOVA 
analysis performed on the percentages of false positives 
occurred by applying Shuffling procedure. In particular we 
reported plot of means with respect to the interaction between 
SNR, CORRECTION and NORMTYPE factors in Fig.2b 
and LENGTH, CORRECTION and NORMTYPE factors in 
Fig.3b. In this case the percentages of false positives are 
higher in respect to those achieved by Asymptotic Statistic 
approach. However they decreased with the decrease of SNR 
and with the increase of data length and of the severity of 
corrections for multiple comparisons. Both panels revealed 
an effect of the normalization type on the percentages of false 
positives. Duncan’s pairwise comparisons highlighted 
differences between the normalization performed after the 
validation process in respect to the one executed before in 
both rows and columns cases. In particular the normalization 
performed before validation process led to lower percentages 
of false positives in respect to all the others normalization as 
revealed in Fig.2b and Fig.3b. 

Similar behavior was found for the percentages of false 
negatives. Details about the results achieved were not 
reported due to the brevity of the paper. However, the 
percentages of false negatives were not influenced by the 
normalization type in the Asymptotic Statistic case. Instead 
significant effects of factor NORMTYPE on the percentages 
of false positives was found in Shuffling case. The higher 
percentages of false negatives were found for NRB and NCB 
cases.  

IV. DISCUSSION 
All the results described in this paper highlighted some 

important factors affecting the statistical validation process. 
In particular, the percentages of false positives are strongly 
influenced by the quality of data included in the estimate as 
already demonstrated in [6], [13]. In fact the percentages of 
false positives decreased for decreasing values of SNR and 
increasing values of Data Length. An opposite behavior was 
found for the percentages of false negatives. Also the effect 
of different types of correction for multiple comparisons was 
in agreement with previous findings [13]. The decrease of 
false positives and the correspondent increase of false 
negatives were related to the severity of adjustment for 
multiple comparisons. The comparison between the two 
validation approaches confirmed the role of Asymptotic 
Statistic as a valid alternative to the time consuming 
Shuffling procedure [13] due to its higher performances 
under different conditions of data quality.  

The definition of PDC estimator affected only the 
percentages of type I and type II errors occurred by using 
Shuffling procedure. In particular for normalization 
according to rows and columns both before the validation 

process resulted low percentages of false positives and high 
percentages of false negatives. No effects of the PDC 
formulation resulted on the performances achieved during 
the validation process executed by means of Asymptotic 
Statistic.  

V. CONCLUSION 
Results showed in the present paper provided some 

guidelines for the use of normalizations to be applied to 
PDC estimator in relation to the quality of data available for 
the analysis and to the method used for the statistical 
validation process. Moreover, the simulation study not only 
confirm the higher performances of Asymptotic Statistic 
method in preventing both type I and type II errors but also 
highlighted its independence from the type of normalization 
used for PDC estimator.   
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