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Abstract— This paper aims at estimating causal relationships 

between signals to detect flow propagation in autoregressive and 

physiological models. The main challenge of the ongoing work is 

to discover whether neural activity in a given structure of the 

brain influences activity in another area during epileptic 

seizures. This question refers to the concept of effective 

connectivity in neuroscience, i.e. to the identification of 

information flows and oriented propagation graphs. Past efforts 

to determine effective connectivity rooted to Wiener causality 

definition adapted in a practical form by Granger with 

autoregressive models. A number of studies argue against such a 

linear approach when nonlinear dynamics are suspected in the 

relationship between signals. Consequently, nonlinear 

nonparametric approaches, such as transfer entropy (TE), have 

been introduced to overcome linear methods limitations and 

promoted in many studies dealing with electrophysiological 

signals. Until now, even though many TE estimators have been 

developed, further improvement can be expected. In this paper, 

we investigate a new strategy by introducing an adaptive kernel 

density estimator to improve TE estimation. 

I. INTRODUCTION 

In neuroscience, recent works have been devoted to detecting 

effective connectivity [1] defined as a causal influence of the 

dynamics of a first system on the dynamics of a second one. 

In this context, two questions are commonly addressed: (i) 

how to choose a formal quantitative definition of effective 

connectivity and (ii) how to provide corresponding estimators 

defined as functions of signals recorded in both systems. 

Nowadays two approaches contrast. The first one does not 

rely on an underlying physiological model while the second 

one, namely dynamical causal modeling, does. In this 

contribution, we are only concerned with the first approach 

including linear and nonlinear methodologies, and we 

consider nonlinear nonparametric entropic characterization 

of this connectivity using the so-called transfer entropy (TE). 

When computed on a stationary bivariate time series � �,X Y , 

this quantity measures the amount of information transferred 

from channel X  (resp. Y ) to channel Y  (resp. X ) and is 

denoted x yoTE  (resp. ) hereafter. It was introduced y xoTE
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by Schreiber [2] and defined as the Kullback-Leibler 

divergence between two different predictive probability 

distributions of . The first distribution is defined 

conditionally to amplitudes of 

nY

'nX ,  and , ' �n n 'nY ' �n n , 

at time instants prior to , and the second one is only defined 

conditionally to , 

n

''nY �n n . A simple exchange of X  and 

 leads to the definition of TE . Formal definition is 

given by 
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with U U � �� ,  denotes the probability 

density of a random vector U  at ,  and  are the 

predictor dimensions. Let us note that the definition of TE is 

qualitatively consistent with Wiener and Granger approaches, 

which only compare mean square prediction errors. In theory, 

�Up u �
u k l

x yoTE  is never negative and is equal to zero iif  
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The choice of  and  can impact drastically on theoretical 

TE value and, without a priori information on the hidden 

nonlinear dynamics generating �

k l

�,X Y

�

, this issue is not 

trivial and is not discussed in this paper. Given the theoretical 

index and an N  point observation �, ,
n

1..X Y n N , we 

have to determine an estimation procedure to compute 

m
x yoTE  from  

 � � �ax� �� �,k l1 0n 0, , mk l
n ny y�  ,n ,.n ., 1N � 1nx  (3) 

If all probability densities are known, the trivial Monte Carlo 

estimator could be:  
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Since the densities are unknown, a first method consists in 

replacing each density  by an estimation  possibly 

obtained by a fixed size kernel estimation approach as 

proposed in [3]. A second method computing estimations 

 of 

Up ˆUp

� �nlog Up � �log Up  from K Nearest Neighbors (KNN) 

selection was developed for mutual information estimation in 

[4] and applied in [5]. It is also possible to compute the 
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estimation of a density Up  with adaptive size kernels. We 

propose this improvemen o compute TE and compare our 

results on linear Gaussian models (i) with corresponding 

theoretical values, and (ii) with TE estimated using a fixed 

bandwidth kernel and/or KNN kernel as in [5]. Then, these 

methods are compared on a neurophysiological model [11]. 

t t

t a p

IIê METHODS AND MATERIALS 

A. Ke

ruc robability density  from

 

rnel methods 

In order to reconst  Up

rn

 N  

ityobserved states nu , the general form of a fixed ke el dens  

estimator (FKDE) of bandwidth h �is given by: 
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where� � � For joint density 

U
n

K

denotes a kernel function.K

probability estimated at � �, ,k ly y x , we write: 
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where ^ `/ max( , ) 1, ,cm k l m N m n W'  � d � � !  and cW �is 

rrelation time defined as the minimum dethe deco lay leading 

to a correlation coefficient equal to 0.1. Parameters xh , yh  

are the respective kernel bandwidths for signals x  d  

which are normalized. A fixed bandwidth (independent of m ) 

is unable to deal satisfactorily with the tails of the distribution 

without over smoothing the main part of this distribution. To 

avoid this issue, two methods help in estimating a density 

an y

f �

at a point x : 
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The first method (7) uses 

( )m mh h x{  

a x  dependent bandwidth, this 

bandwidth being unchanged for different points mx . One 

example of this method is a KNN estimator [6]. The second 

method (8) uses a mx  dependent bandwidth, which does not 

depend on x , leading to the adaptive kernel density estimator 

(AKDE) [7 we adopted. 

B. Adaptive kernel density

] 

 estimator 

KDE. Given an initial AKDE is an improved alternative to F

bandwidth 0h  and a first FKDE based estimation 0f̂ , 

Abramson [8] adapted the bandwidth according to th e 

initial quantities: 

� ���������������
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In [9  Hwang extended this procedure: 

 (10)�

here

],

 0 0
ˆ( ( ) / ) r

m mh f x g h �

w  g  is the geometric mean of � �0(f xˆ )m
m

, i.e. 

� 0
1

1 ˆ
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log log ( )m
m

g f x
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 is an user defined sensitivity parameter generally 

satisfying 

 

r

0 1r� � . For different dimensions, the value of r  

should change. However, it is difficult to choose the proper r  

for four different probability density estimations. We suggest 

to compute 1ˆ ( , , )k l
YYX n n np y y x�  before its substitution in (4) 

using (10) a er densities unchanged. The 

three steps of the proposed algorithm are as follows: 

Step 1: for 

nd to leave the oth

� �10hn �  values iv  of h , 10 .. 3v v� � � d , 
hn

at 1( , k
n ny y�compute fixe l density estimations , 

( , )k l
n ny x , k

ny  and 1( , , )k l
n n ny y x� ; 

 mpute

d kerne  )

Step 2: co   using (10) only to update mh

� �1ˆ , ,k l
YYX n n np y y x�  leaving the other densities unchanged, 

 of values iv  leading to unimodality of 

^ ` m � �� �
and search the set hV

� �1 2: 0 ,.., 1 ,
i i

x yv m i v0f r r r TE h v r f r� � � o   for o

^ `1,..,
hi nv vQ �  

multimodal curv

hence eliminating monotonic curves (no 

e was observed); 

Step 3: finally retain the maximum value 

m
� � @ > � �� �, 0;1max

h
x y hh r VTE f ro � u . 

Experimentally, the selected value sh  in the last step is often 

XPERIMENTAL RESULTS 

We tested our m to compute 

close to the initial bandwidth 0h . Clearly, the computation 

time is increased with AKDE (m ltiplied by 20) for updating 

the density in step 2.  

III. E

u

ethod with Gaussian kernels 

ox yTE  and oy xTE  on two kinds of signals. The first kind 

ar AutoRegressive (AR) models and the 

second one was a realistic EEG model. Predictor dimensions 

k  and l  were chosen equal to the corresponding AR models 

orders estimated by the generalized Bayesian Information 

Criterion as in [10]. For AR models, the decorrelation time 

was 20c

included two toy line

W   and experiments were repeated 200 times on 

1024-point signals to get averaged values. 

A. Unidirectional linear model 

For the first linear stochastic system

two signals were generated: 

 (model 1), the following 

�
( ) 1.3435 ( 1) 0.9025 ( 2) ( ) � � � �

®
1

2( ) 0.5 ( 3) 0.4 ( 2) ( ) � � � �¯

x n x n x n e n

y n x n y n e n
� �����

 and were independent white Gaussian noises 

with zero means and unit variances. 

where 1e 2e  
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Figure 1. Results of TE between two time series x  and (model 1) using a 

Gaussian kernel and a fixed bandwidth 

Solid line: 

y  

h  

m
x yTE o , dashed line: m y xTE o  

Horizontal line: exact value 0.41x yTE o   

 

Figure 2. Results of TE between two time series x  and (model 1) using a 

Gaussian kernel and AKDE (10) 

Solid line: 

y  

m
x yTE o , dashed line: m y xTE o  

Horizontal line: exact value 0.41x yTE   o

TABLE I. MEAN ND STA ION IN P RENTHESES) OF 

TRANSFER ENTROPY USING THE DIFFERENT ESTIMATORS ON MODEL 1 

Estimator 

 VALUES (A NDARD DEVIAT A

X Yo  Y Xo  

GC/2 0.4146 0 

T 0.3242 (0.0158) 0 (0) E (fixed h ) 

TE (AKDE) 0.4063 (0.0179) 0.01267(0.0045) 

Trentool 0.3484 (0.0115) -0.0158 (0.0070) 

Fig.  TE c  a fix . 

Exper transfer

 1 displays omputed with ed bandwidth h

imental  entropy m x yo  TE is   smaller than the

e

theoretical value which is equal to Granger Causality index 

divided by 2 (GC/2 was computed from the mod l 

coefficients) in the case of Gaussian signals (see Table I). Fig. 

2 corresponds to TE values vs. r  using AKDE. The flow 

propagation from signal x  to signal y  was correctly 

established whereas the estimated influence from signal y  to 

signal x  was not significant. Step 3 of the algorithm led to 

0.45sh  . Comparing Fig. 1 nd Fig. 2, T estimated using 

AKDE is much closer to the exact value (0.41). We lso 

compared our estimator with Trentool toolbox [5] and 

d to its relevant behavior as seen in Table I which 

allows to compare the different estimators in terms of mean 

and standard deviation. It reveals visible improvement in 

m

 a E 

a

conclude

x yTE o  performance with Gaussian AKDE over all other 

estimators. 

ectional linear model 

For the second line r stochastic system (model 2), we 

generated th

B. Bidir

a

e following signals: 

 
1

2( ) 0.5 ( 3) 0.4 ( 1) ( )
®

 � � � �¯

( ) 0.5 ( 1) � � 0.3 ( 2) ( )� �x n x n y n e n

y n x n y n e n
 �����

where  and were as in (12). Fig. 3 and Fig. 4 allow 1e

are 

2e  

values 

sh

to 

omp TE using either a fixed bandwidth (Fig. 3) or c

AKDE (Fig. 4, 0.45 ). For this model, the exact value of 

 signal TE from x  to signal y  (resp. from signal y  to signal 

x ) given in Table II is represented by a solid grey line (resp. a 

dashed grey lin . 3 and 4. Focusing on Fig. 4, the 

bidirectional flow propagation was correctly detected using 

AKDE, the mean values of TE being close to the exact ones 

(see also Table II). This figure reveals that the bias of AKDE 

estimator is negligible. As for TE estimated with a fixed 

bandwidth (Fig. 3 and Table II), its values remain lower than 

the exact ones, similarly as those estimated with Trentool 

toolbox. For all estimators tested, the standard deviation is 5 

to 10 times lower than the corresponding mean value. 

e) in Fig

 
Figure 3. Results of TE between two time series x  and (model 2) using a 

Gaussian kernel and a fixed bandwidth 

Solid line: 

y  

h  

m
x yTE o , dashed line: m y xTE o , Horizontal lines: exact values 

 
Figure 4. Results of TE between two time series x  and (model 2) using a 

Gaussian kernel and AKDE (10) 

Solid line: 

y  

m
x yTE o , dashed line: m y xTE o , Horizontal lines: exact values 

TRANSFER ENTROPY USING THE DIFFERENT ESTIMATORS ON MODEL 2 

TABLE II. MEAN VALUES (AND STANDARD DEVIATION IN PARENTHESES) OF 

Estimator X Y Y Xo  o  

GC/2 0.1511 0.0630 

TE (fixed 0.1118 (0.0123) 0.0422 (0.0083)  h ) 

TE (AKDE) 0.1457 (0.0133) 0.0689 (0.0087) 

T 0.1120 (0.0091) 0.0446 (0.0079) rentool 
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C. P ased m

We sim

differential m

activities of two neuronal populations  and 

hysiology b odel 

ulated EEG signals with a nonlinear 

equation) 

SDE (stochastic 

odel [11] of order 20 to represent the 

 

XPop YPop : 
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, , ,T
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ª º  �¬ ¼

I E X I E X

T T

� ,ª º  T T �
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I E Y I E XY Y

X dt dW

d Y Y g Y Y K Sig X dt dW

d X X g X

������

I E I EX t L X t X t Y t L Y t Y t

where the line vectors T T
I EX X  and T T

I EY Y

dynami

com

 are in  is 

e transpose operator) te 

for  and ponents 

10
\  (

cal state evolutions 

T

th  and deno

 aggregating XPop YPop > @
I

 and 

> @
E

 modeling respectively inte  

excitatory activities. Parameterized nonlinear functions 

�

Figure 5. Results of TE between two delayed simulated EEG signals using a 

Gaussian kernel and AKDE (10) 

Solid line: m x yTE o , dashed line: m y xTE o  

racting inhibitory and 

� � �, , ,u v g u v To

line

ws

linear function 

 dr

L a

ive the state evolutions. Sig(.) is a 

ar sigmoidal function. The coupling parameter XYK  

 effective connectivity adjustment from the first 

population to the second one. X and Y are computed with a 

nd are interpretable as two intracranial 

EEG signals recorded from proximal field electrodes.  

independent Brownian processes XW  and YW  represent 

random surrounding populations influences. The parameters 

vector 

non

allo

 The

T  includes three scalar components A , B  and G , 

allowing to modify the type of activity (normal/epileptic). 

The model was time discretized by E  sche o produce 

two discrete time outputs. As in [11], we fixed these 

parameters to 5, 3, 20 in XPop  and to 3.5, 3.5, 84 in Pop . 

This resulted in a narrow band fast activity around 25 Hz 

(similar to that observed at seizure onset) in each population. 

XYK  was set to 1500 . Fifty blocks of 8-second length 

signals were simulated wit mpling rate of 256 Hz. In this 

experiment, as the influence from one physiological signal to 

another one may be largely delayed, and to get a not too large 

p tor dimension e first shifted signal Y  as proposed 

in [1]. The delay corresponded to 33 sampling time instants 

and was determined from cross covariance maximization. 

The maximum order in the model (after shifting) was set to 2 

and c

uler me t

Y

h a sa

, wredic  l

W  was set to 500 . According to Fig. 5 and Table III, we 

conclude to the relevance of the new estimator compared to 

the "references" given by Granger causality index (GC/2) and 

Trentool toolbox. As a matter of fact, m x yTE o  and m y xTE o  

are sensibly mor ontrasted (considering means and 

standard deviations) with Gaussian AKDE than with the two 

other methods (Table III). Moreover, when comparing the 

mean values of 

e c

mTE  obtained for the dif ethods with 

this physiological model, a larger dispersion was observed 

than with previous linear models 1 and 2. The difference 

between the AKDE based estimator and GC/2 could be 

expected due to the nonrobustness of Granger index to 

nonlinearities. On the other hand, the difference between the 

AKDE based estimator and Trentool estimator (which even 

failed in detecting the flow direction) was unexpected. 

ferent m

TABLE III. MEAN VALUES (AND STANDARD DEVIATION IN PARENTHESES) O

Estimator 

F 

TRANSFER ENTROPY USING THE DIFFERENT ESTIMATORS ON THE 

PHYSIOLOGICAL MODEL 

X Yo  Y Xo  

GC/2 0.011 (0.0193) 0.0028 (0.0009) 

TE (AKDE) 0.2521 (0.1143) 0.1249 (0.0615) 

Trentool 0.0049 (0.3182) 0.0091 (0.0083) 

IV. CONCLUSION 

In t we f formation propagation 

betwe observa E an an 

adaptive prove fixed kernel TE 

estimator. Re ls revealed a very 

iber, “Measuring information transfer,” Physical Review Letters, vol. 
85, pp. 461-464, 2000. 

his paper, ocused on in

en two 

kernel density

tions using T

 estimator to im

d introduced 

sults on simulated AR mode

low bias with AKDE approach and proved the relevance of 

this new method in detecting uni/bi-directional propagation 

flows. Using a fixed bandwidth or Trentool approach led to 

much more biased values. For physiological signals, even if 

we had no ground-truth, the causal effects were perfectly 

identified and allowed characterizing the driving system and 

the responding one. In the future, the AKDE method will be 

tested on real EEG signals and on more complex scenarios 

including stronger nonlinearities and/or multivariate 

observations. A validation phase including statistical 

hypothesis tests based on surrogate data will complete this 

work. 
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