
  

 

Abstract— Tuberculosis is a common and potentially deadly 

infectious disease, usually affecting the respiratory system and 

causing the sound properties of symptomatic infected lungs to 

differ from non-infected lungs. Auscultation is often ruled out 

as a reliable diagnostic technique for TB due to the random 

distribution of the infection and the varying severity of damage 

to the lungs. However, advancements in signal processing tech-

niques for respiratory sounds can improve the potential of aus-

cultation far beyond the capabilities of the conventional me-

chanical stethoscope. Though computer-based signal analysis of 

respiratory sounds has produced a significant body of research, 

there have not been any recent investigations into the comput-

er-aided analysis of lung sounds associated with pulmonary 

Tuberculosis (TB), despite the severity of the disease in many 

countries. In this paper, respiratory sounds were recorded 

from 14 locations around the posterior and anterior chest walls 

of healthy volunteers and patients infected with pulmonary TB. 

The most significant signal features in both the time and fre-

quency domains associated with the presence of TB, were iden-

tified by using the statistical overlap factor (SOF). These fea-

tures were then employed to train a neural network to auto-

matically classify the auscultation recordings into their respec-

tive healthy or TB-origin categories. The neural network yield-

ed a diagnostic accuracy of 73%, but it is believed that auto-

mated filtering of the noise in the clinics, more training samples 

and perhaps other signal processing methods can improve the 

results of future studies. This work demonstrates the potential 

of computer-aided auscultation as an aid for the diagnosis and 

treatment of TB. 

I. INTRODUCTION 

uberculosis (TB) is a common and potentially deadly 

infectious disease, with over one third of the world’s 

population infected [1]. In 2005, globally 1.6 million 

people died of active TB [2] and the rising number of cases 

in developing countries has been linked to the fact that im-

munosuppressive drugs and the human immunodeficiency 

virus (HIV) compromise many citizens’ immune systems 

[1]. In 1993 the World Health Organization (WHO) declared 

TB a global emergency and stated an interest in the devel-

opment of rapid and inexpensive diagnostic tests to assist 

diagnostics at the point of care: “Rapid and cheap diagnosis 

will be particularly valuable in the developing world” [3].  
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Since pulmonary TB damages the respiratory system, the 

sound properties of infected lungs differ from that of healthy 

lungs and can therefore be expected to exhibit adventitious 

lung sounds, which often indicate an abnormality in the 

lungs, such as obstruction in the airway passages or a pul-

monary disease [4]. The two main groups of adventitious 

sounds typically found in abnormal lungs are called wheezes 

and crackles. Both of these primary adventitious categories 

are relevant to TB, since lungs damaged by active TB result 

in displaced lung tissue, causing airway obstructions and 

hence possible wheezing sounds. A symptom of fibrosis 

from lung healing may also produce crackles. With these 

irregular waveforms and higher frequency components [5], 

auscultation can be assumed to be a viable, inexpensive and 

non-invasive diagnostic tool for TB. However, auscultation 

is often ruled out due to the random orientation, distribution 

and varying severity of damage to the lungs, resulting in a 

variety of adventitious sounds often mistakenly attributed to 

other respiratory diseases.  

 

Publications have indicated significant successes in using 

signal analysis, pattern recognition, mathematical modeling, 

neural networks and other methods to distinguish between 

adventitious and normal respiratory sounds. However, to 

date, most studies were aimed at the autonomous identifica-

tion or classification of specific adventitious sounds and did 

not focus on a specific disease (except for several dealing 

with Asthma).  In particular, there has been no attempt at 

digital analysis of respiratory sounds associated with TB, 

besides a very basic study in 1983 [5]. Here the basic obser-

vation of band-pass filtered lung sound recordings on an 

oscilloscope indicated a difference in amplitudes between 

healthy and TB infected lungs [5]. This gap in the literature 

has left the question of whether respiratory sounds originat-

ing from lungs infected with TB possess any unique features 

beyond human auditory judgment that are consistent for all 

cases of TB, or whether the TB related lung sounds can only 

be used for respiratory health assessment and not diagnosis. 

II. EXPERIMENTAL SETUP 

A. Apparatus and Measurement Approach 

      Respiratory inhaling and exhaling movements were rec-

orded using a Pneumotrace II (AD Instruments) piezoelectric 

belt, worn across the base chest area, containing seven elec-

tronic stethoscopes. The participants were seated in a chair 

in the upright position, as suggested by Rossi et al. [6]. 

Qualified pulmonologists from Tygerberg Academic Hospi-

tal, South Africa, determined that the seven microphones 

would cover the posterior and anterior chest in the most 
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common locations of TB infection, as indicated in Figure 1. 

The experimental protocol for the study was approved by the 

Committee for Human Research (CHR) of the Faculty of 

Health Sciences at Stellenbosch University (South Africa), 

in compliance with the principles laid down in the Declara-

tion of Helsinki. All participants gave informed consent.  

 

                      
Figure 1: Stethoscope locations for right lung recording with stethoscopes 
numbered at (1) trachea; (2) clavicle; (3) below the clavicle on the anterior 

chest; (4) lateral side between the 2nd and 4th intercostal spaces; and (5,6,7) 

three stethoscopes down the posterior chest along the paravertebral line. 

B. Procedure 

The respiratory maneuvers recorded entailed: 1) five respira-

tory cycles at tidal breathing; and 2) three or four slow vital 

capacity maneuvers. This procedure was repeated three 

times, after which the stethoscopes were removed and placed 

over the adjacent lung, which resulted in a total of 14 rec-

orded locations across the anterior and posterior chest wall. 

During recordings on TB patients, surgical masks and latex 

gloves had to be worn and all the equipment had to be disin-

fected after each recording session. In total, 27 healthy vol-

unteers and 33 TB infected patients participated in the study. 

Three breaths per lung were selected from each participant. 

The patients infected with TB originated from three commu-

nity clinics within the Cape Town (South Africa) metropoli-

tan area, and were diagnosed as having pulmonary TB after 

obtaining three positive sputum culture tests and a positive 

radiography diagnosis by a qualified medical practitioner. 

Criteria regarding the severity of the disease were left as 

random as some TB patients displayed other diseases such as 

AIDS. Participants were of a mixed race, age and gender. 

III. DATA ANALYSIS 

A. Preprocessing 

   Analysis of the recordings required filtering to extract only 

the frequencies at which respiratory sounds occur. The first 

set of filters was analogue anti-aliasing low-pass filters built 

into the Zonicbook system on each recording channel. The 

analogue signals were sampled by the Zonicbook at 10 250 

Hz, and with this sampling rate the Zonicbook system auto-

matically adjusts the cut-off frequency for its anti-aliasing 

filters at 4000 Hz. All the signals were then digitally re-

sampled in Matlab at 6 000 Hz in order to speed up the com-

putational time for subsequent analysis. This resulted in a 

final analysis range of 1–3000 Hz, which is wide enough to 

cover the frequency extremities of all adventitious sounds 

[9]. As basic high-pass filtering of lung sound recordings to 

reduce heart sounds would remove significant components 

of lung sounds [10] and introduce undesirable phase shifts 

[11], adaptive filters were implemented in Matlab to remove 

low frequency heart sounds [12] and in severe cases, envi-

ronmental noise as well.  

B. Feature extraction 

      All the recordings were normalized between minimum 

and maximum values of -1 and 1 to reduce the effect of dif-

ferent ambient conditions and differences due to subject to 

subject variability, similar to Jain and Vepa [7]. After nor-

malization, the mean of each recording was restored to zero. 

Subsequent signal analysis was completed in four categories, 

namely; time domain; frequency domain; wheeze parame-

ters; and crackle parameters. 

 

Time domain features included taking a single breath (inha-

lation and exhalation), calculating the root mean square 

(RMS) of the signal, as well as dividing the signal into ten 

segments (maintaining five segments over inhalation and 

five over exhalation) and then calculating the RMS of each 

segment. Furthermore, a crest factor (peak amplitude divided 

by RMS) was calculated for each of the ten segments and the 

maximum and average of the ten crest factors. A Fast Fouri-

er Transform (FFT) was calculated for the entire inhalation 

and exhalation breath cycles. The frequency of the maxi-

mum amplitude was identified as a possible diagnostic fea-

ture. Further frequency domain features included the ratio 

between the maximum amplitude in the FFT divided by the 

area under the FFT graph for the entire breath cycle. Addi-

tionally, the FFT was divided into digital octave bands of 0-

17 Hz, 18-45 Hz, 46-90 Hz, 91-180 Hz, 181-360 Hz, 361-

720 Hz, 721-1440 Hz and 1441-3000 Hz respectively. The 

areas of each octave band divided by the total area of the 

FFT were used as additional signal features.  
 

In the wheeze analysis the only aim was to determine if there 

were features in the signal matching Sovijärvi et al.’s [4] 

definition of a wheeze. The characteristics of a wheeze in-

clude the pitch and duration of a pseudo-sinusoidal signal 

present in the respiratory recording. The output of the 

wheeze analysis was hence merely a 0 or 1, indicating the 

presence or absence of wheeze characteristics in that signal. 

The presence of a wheeze in a respiratory signal was identi-

fied following an evaluation procedure on a spectrogram, as 

recommended by Kandaswamy et al. [8]. Crackle analysis 

involved choosing a mother wavelet and measuring the de-

gree of similarity of scaled and shifted versions of the moth-

er wavelet to that of the respiratory signal. Visual inspection 

of wavelets showed that the Daubechies 5 (db5) wavelet had 

the closest match to a characteristic crackle waveform. The 

wavelet decomposition process consisted of decomposing a 

signal into its low-pass approximations and high-pass details 

using shifted and scaled versions of the db5 wavelet. Each 

resulting packet is then broken down into further approxima-

tions and details, up to a decomposition level of five. A 

“tree” of packets is produced, containing the wavelet coeffi-

cients in packets on different levels of the tree. Peaks in the 

wavelet coefficient plots indicate a high degree of similarity 

between the mother wavelet and the respiratory signal. For 

each packet, statistical data such as the wavelet mode, mean, 
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median and range of coefficients can be obtained, to be rep-

resented in a histogram. 

 

Visual comparisons between the approximations and details 

from ten recordings of healthy lungs and ten recordings con-

taining crackles (downloaded from the internet [13-15]) 

showed that the decomposition at wavelet packet level five 

using nodes (5,2), (5,3), (5,6) and (5,7) had the highest de-

gree of variability between the healthy recordings and re-

cordings containing crackles. Figure 2 shows examples of 

the wavelet decomposition at node (5,7). The low values 

indicate a low level of correlation between the signal and the 

db5 mother wavelet, and the higher values indicate a higher 

level of correlation between the signal and the db5 mother 

wavelet. Various statistical factors from these nodes were 

used for further consideration as signal features relating to 

the presence of crackles in the respiratory sound.  

 

 
Figure 2: Wavelet decomposition of respiratory sound of TB-infected lung 

at node (5,7). 

C. Feature reduction 

      Gathering all the time domain, frequency domain, crack-

le and wheeze features resulted in a total of 202 signal fea-

tures per breathing cycle. The distribution of these 202 fea-

tures across the four analysis groups were: 1-33 were time 

domain features, 34-45 were frequency domain features, 46 

were for the presence of a wheeze characteristic (0 or 1), and 

47-202 were features derived from the wavelet analysis for 

the detection of crackles. Being repeated for a total of 27 

healthy participants and 33 patients infected with TB, and 

given that all participants contributed three respiratory 

sounds for (mostly) the left and right lung, a total of 156 

respiratory sounds were obtained from healthy participants, 

and 189 respiratory sounds were obtained from patients in-

fected with pulmonary TB. A method was required to de-

termine which of the 202 signal features on which of the 

stethoscopes displayed the largest degree of separation be-

tween signal features from healthy and TB-infected lungs. 

The statistical overlap factor (SOF), often used for feature 

selection in such cases, is given by: 

where xh is the mean of the particular signal feature for the 

healthy participants, xTB is the mean of the same signal fea-

ture for patients infected with TB, h is the standard devia-

tion of the signal feature for healthy participants and TB the 

standard deviation of the patients infected with TB. The SOF 

thus indicated the degree of separation between signal fea-

tures between the two groups, while also considering the 

variance in the distribution of that feature. The entire feature 

set is also normalized for the purpose of the SOF calculation. 

 
Figure 3: Weighted average contribution to the SOF. Category # 1 applies 
to the RMS of the signal and segments of the signal, and category # 2 to the 

crest factors of the signal and segments of the signal. Categories 3 – 11 are 

the ratios of frequency band areas ranging from 1-3000 Hz. Category # 11 
describes the contribution of the wheeze analysis and category 12-15 the 

crackle analysis categories.  

A histogram summary of the SOF results is shown in Figure 

3. Since displaying 202 categories on the x-axis appears 

crowded the 202 results were grouped into 15 groups, name-

ly group 1 being the RMS analysis and RMS of the signals 

broken into 10 segments, group 2 being the crest factors and 

its 10 segments, group 3 – 11 being the FFT analysis of the 

frequency bands ranging from 1-3000 Hz. Group 11 repre-

sents the outcome of wheeze or no wheeze present. Group 

12 – 15 includes the crackle analysis. It is clear that major 

SOF contributions came from the following factors:  

 

 the area under frequency certain bands in the FFT (91-

180 Hz, 721-1440 Hz and 1441-3000 Hz), divided by 

the total area under the FTT (category 6,9 and 10); 

 the RMS in of the time waveform, or segments of the 

time waveform (category 1 and 2); 

 signal features derived from the crackle analysis (cate-

gory 12 - 15). 

 

Although there is some variation in stethoscope location and 

the type of signal feature, it can be theorized that a differ-

ence exists between the recordings of healthy volunteers and 

TB patients in the sense that the recordings from TB patients 

show a higher presence of crackle parameters, and this in 

turn contributes to the higher amplitude in higher frequency 

bands in the FFT. This is illustrated in the histogram sum-

mary of categories 6, 9 and 10 and 12 – 15.  

D. Neural network modeling 

      The effectiveness of an ANN to correctly classify re-

cordings into its respective healthy and unhealthy categories 

was investigated using the features with the highest SOF 

values as inputs to the ANN. To find the optimal ANN train-

ing algorithm, cross validation (CV) was used across four 

different training algorithms [7], namely: 1) adaptive learn-

ing rate back propagation (BP); 2) resilient BP; 3) scaled 

conjugate gradient; and 4) the Levenberg-Marquardt algo-

rithm. For the CV approach, the ANN was trained and tested 

six times, each time with a new set of training and testing 

data rotated in such a way that the network is tested with 

previously unseen data. Approximately 75% of the total data 

was used for training and the remainder for testing.   

  / 2
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IV. RESULTS 

Analysis of the training performance across different input 

parameter numbers and tolerance levels indicated the Resili-

ent BP training algorithm to have the lowest error for a tol-

erance of 0.4 and the number of input parameters at 14 from 

a possible 202. The detection performance of the algorithm 

is given in terms of the quantitative measures defined below, 

where TP, TN, FP, and FN are the number of true positive, 

true negative, false positive, and false negative TB detec-

tions, respectively. This can be summarized by: 

The ANN yielded a sensitivity of 80%, specificity of 67% 

and consequently a total diagnostic accuracy of 73 %. 

V. DISCUSSION 

   With the application of computer technology, a more in-

depth analysis of pulmonary acoustics is possible, with re-

sults that are clinically significant. Though there is a signifi-

cant body of research on digital analysis of respiratory 

sounds, there has been no investigation specifically into TB, 

despite the necessity of curbing the prevalence of this dis-

ease. This paper investigated the possibility of using elec-

tronic auscultation for the diagnosis of TB, for potential ap-

plication in a rural environment or in a telemedicine setting. 

A large database of respiratory sounds was established and 

analyzed, using a wide variety of techniques, including time 

domain, frequency domain and both adventitious wheezes 

and crackle analysis. Of the 202 signal features generated, a 

statistical overlap factor indicated that several features dis-

played a degree of separation between recordings from 

healthy lungs and recordings from TB-infected lungs. These 

were entered into an ANN for automated classification of the 

data. ANN optimization included a CV approach across four 

different training algorithms, of which the final network er-

ror evaluation yielded the top 14 signal features to be used 

for optimal results, with a diagnostic accuracy of 

73%.Though the accuracy is lower than anticipated at the 

onset of this study, it is believed that an improvement in the 

system used for data collection can enhance the diagnostic 

accuracy, for instance by automated filtering of ambient 

noise (people talking, babies crying, footsteps, etc.).  

VI. CONCLUSION 

   It appears that high-pitched crackles are present in many of 

the TB patients’ lungs included in this study and hence a 

detailed investigation, possibly involving more advanced 

methods, would be required in future work. It is remarkable 

that very little literature exist on the characteristics of respir-

atory sounds associated with TB, based on electronic record-

ing and digital analysis. With the availability of more so-

phisticated analysis methods, it is believed that TB can be 

fought with a more substantial effort. Future work will in-

clude tracking TB patients and collecting more data as they 

are treated and recover, to determine whether the selected 

features are permanent or whether they normalize upon full 

recovery. Furthermore, the accuracy of the proposed method 

must be evaluated against the presence of other respiratory 

diseases and would be a fitting goal for future work.  
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