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Abstract— Automatic identification of biosignals is one of
the more studied fields in biomedical engineering. In this
paper, we present an approach for the unsupervised recognition
of biomedical signals: Microelectrode Recordings (MER) and
Electrocardiography signals (ECG). The unsupervised learning
is based in classic and bayesian estimation theory. We employ
gaussian mixtures models with two estimation methods. The
first is derived from the frequentist estimation theory, known
as Expectation-Maximization (EM) algorithm. The second is
obtained from bayesian probabilistic estimation and it is called
variational inference. In this framework, both methods are used
for parameters estimation of Gaussian mixtures. The mixtures
models are used for unsupervised pattern classification, through
the responsibility matrix. The algorithms are applied in two real
databases acquired in Parkinson’s disease surgeries and electro-
cardiograms. The results show an accuracy over 85% in MER
and 90% in ECG for identification of two classes. These results
are statistically equal or even better than parametric (Naive
Bayes) and nonparametric classifiers (K-nearest neighbor).

I. INTRODUCTION

The clinical need of the biosignal analysis, arises from the

fact that diseases and dysfunctions in biological processes

may be detected with digital signal processing and pattern

recognition. For example, classification of electrocardio-

grams (ECG) into different disease categories is a difficult

pattern recognition task. At this scenario, the processing of

electrocardiogram signals is an effective method for diagnos-

ing cardiac arrhythmias. Classification algorithms applied in

ECG’s can provide high accuracy results [1]. A typical heart

beat is identified from the ECG and the component waves

of the QRS, T, and P waves are characterized using mea-

surements such as magnitude, duration and area. Excellent

results are achieved extracting shape features of the ECG

that discriminate between the different diagnostic categories.

Also, the interpretation of physiological signals known as

Microelectrode Recording signals (MER-signals) is crucial

for Deep Brain stimulation (DBS) of the Subthalamic Nu-

cleus (STN) in Parkinson’s Disease patients [2]. MER signals

have a non-stationary behavior due to the contribution of

several biochemical factors [3]. For this reason is necessary

the development of robust methodologies for processing

and classification of these signals. This procedure serves as

medical support for the correct location of a target brain area

and the respective implantation of microelectrodes.
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Supervised classification algorithms, usually operate with

the information provided by a set of samples, a set of

patterns, or training examples with a correct class label.

This data set is called training set. When, there is not a

previous knowledge about the labels, it is needed a data anal-

ysis known as unsupervised learning. Unsupervised learning

studies how systems can learn to represent particular input

patterns in a way that reflects the statistical structure of

the overall collection of input patterns. In contrast with

supervised learning there are no explicit target outputs or

labels associated with each input [4]. The goal is to build

classifiers without prior information. Unsupervised learning

consists of dividing the set of samples in groups of similar

objects called clusters. In this context the cluster represents

a data class.

Clustering algorithms have been used in speech recog-

nition, image segmentation and computer vision [5], data

mining, information retrieval and text mining [6], heteroge-

neous data analysis [7], web applications [8], computational

biology and DNA analysis [9].

In this paper we use Gaussian mixture models with

the Expectation-Maximization (EM) algorithm proposed by

[10], and variational inference algorithm. The responsibility

matrices: γ(z) in EM algorithm and r in variational inference

determine the class of each sample. The algorithms were

tested on two different real databases: 1. Brain signals from

microelectrode recording (MER) and, 2. Signals of electro-

cardiography (ECG). The raw MER-signals were processed

using adaptive wavelets with two decomposition levels. Dis-

crete wavelet transform with five decomposition levels was

used for ECG signals. Processed databases (MER and ECG)

have eight and fifteen features per sample respectively. Both

databases have two classes. The results show an accuracy

over 85% in MER and 90% in ECG for identification of two

classes. This results are statistically equal or even better than

some supervised classifiers.

II. MATERIALS AND METHODS

A. Databases

The MER database of the Technological University of

Pereira (DB-UTP) includes recordings of surgical procedures

in patients with Parkinson’s disease, whose ages are between

55±6 (5 men, 2 woman). All the patients signed an informed

consent form. Microelectrode recordings were obtained us-

ing the ISIS MER system (Inomed Medical GmbH). MER

signals were labeled by neurophysiology and neurosurgery
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specialists from the Institute of Parkinson and Epilepsy of

the Eje Cafetero, located in the city of Pereira, Colombia.

In total, there are 700 neural recordings divided in two

classes: 350 signals from Subthalamic Nucleus (STN), and

350 from other brain structures (Thalamus-Tal, Zone Incerta-

ZI, Substantia Nigra reticulata-SNr). Each record lasted 1

second with sampling frequency of 25 kHz and 16-bit of

resolution.

The ECG Database belongs to the research group Gamma

ascribed to engineering faculty of the University of Quindı́o,

located in Armenia, Colombia. This database consists of

records processed with wavelet transform using 5 decompo-

sition levels. For each record we extract 15 features. There

are 1180 samples of normal beats and 1180 samples of the

pathology: Left Bundle Branch Block (LBBB).

B. Feature Extraction

For MER signals we use adaptive wavelets with two

decomposition levels. We apply the following metrics in

approximation coefficients Cp (p = 1,2):
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Finally, we obtain a feature vector x ∈ R
1X8 for each

sample.

ECG signals were processed via discrete wavelet with

5 decomposition levels. We use statistical descriptors in

approximation coefficients Cp (p = 1,2,3,4,5). Then, we

apply Principal Component Analysis (PCA) for obtain 15

features per sample.

C. EM Algorithm for Gaussians Mixtures

Given a Gaussian mixture model, the objective is to

maximize the likelihood function respect to the parameters

(means, covariances and mixing coefficients). The EM al-

gorithm for Gaussian mixtures can be summarized in the

following steps [11] :

1) Initialize the means µk, covariances Σk, mixing coef-

ficients πk, the convergence criterion, and evaluate the

initial value of the log-likelihood (Eq. 1).

ln p(x | π,µ,Σ) =
N

∑
n=1

ln

{

K

∑
k=1

πk N (xn | µk,Σk)

}

(1)

2) E Step: Evaluate the responsibilities using the current

parameters values.

γ(znk) =
πk N (xn | µk,Σk)

n

∑
j=1

π j N (xn | µ j,Σ j)

3) M Step: Re-estimate the parameters using the respon-

sibility matrix calculated in E step.

µnew
k =

1

Nk

N

∑
n=1

γ(znk)xn,

Σnew
k =

1

Nk

N

∑
n=1

γ(znk)(xn−µnew
k )(xn−µnew

k )T

πnew
k =

Nk

N

Where

Nk =
N

∑
n=1

γ(znk)

4) Evaluate the log-likelihood (Eq. 1), and check for con-

vergence of either the parameters or the log likelihood.

If the convergence criterion is not satisfied return to E

step.

D. Variational Mixture of Gaussians

Full development of variational inference for Gaussian

mixtures can be found in [12]. The variational posterior

distribution is given by,

q(π,µ,Λ) = q(π)
K

∏
k=1

q(µk,Λk)

Where, q(π) = Dir(π | αk) is a Dirichlet distribution and

q(µk,Λk) is a Gaussian-Wishart distribution and is given by,

q(µk,Λk) = N (µk | mk,(βkΛk)
−1)W (Λk |Wk,vk)

Similarly to the EM algorithm, the variational inference

algorithm is performed in the following steps:

1) Initialize all parameters and hyperparameters of the

distribution functions and the prior: α0,β0,m0,v0,W0.

Also initialize the responsibility matrix rnk.

2) Calculate the following statistical values,

Nk =
N

∑
n=1

rnk

x̄k =
1

Nk

N

∑
n=1

rnkxn

S̄k =
1

Nk

N

∑
n=1

rnk(xn− x̄k)(xn− x̄k)
T

3) Find the hyperparameters αk,βk,mk,Wk,vk, corre-

sponding to posterior distributions of mixing coeffi-

cients πk and the parameters µk,Λk.

αk = α0 +Nk

βk = β0 +Nk

mk =
1

βk

(β0m0 +Nkx̄k)
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W−1
k =W−1

0 +NkSk +
β0Nk

β0 +Nk

(x̄k−m0)(x̄k−m0)
T

vk = v0 +Nk

4) Recalculate the responsibility matrix rnk with the up-

dated parameters in step 3,

rnk ∝ π̃kΛ̃
1/2

k exp

{

−
D

2βk

−
vk

2
(xn−mk)(xn−mk)

T

}

Where,

ln Λ̃k =
D

∑
i=1

ψ

(

vk +1− i

2

)

+Dln2+ ln |Wk|

ln π̃k = ψ(αk)−ψ(α̂)

ψ(x) is the digamma function and α̂ = ∑
k

αk.

5) Check for convergence using the variational lower

bound [12], otherwise proceed to step 2.

III. EXPERIMENTAL RESULTS

The clustering algorithms based in Gaussian mixtures with

Expectation-Maximization (EM) and variational inference

(VI) were tested on two databases (See subsection II-A). For

comparison, we test different parametric and non-parametric

classifiers. Within the parametric family, we use the Naive

Bayes classifier with a shared covariance matrix among

classes, known as the linear discriminant classifier (LDC) and

the Naive Bayes classifier with a different covariance matrix

per class, known as the quadratic discriminant classifier

(QDC). Within the non-parametric family, we use the K-

nearest neighbors (KNN) algorithm with K = 1 and K = 3

(KNN1 and KNN3, respectively). We evaluate the classifiers

with the mean accuracy and the Area Under Curve (AUC)

of the Receiver Operating Characteristic (ROC) [13]. We

analyze the statistical significance of our results with a

Kruskal-Wallis test (null hypothesis for equal medians) over

50 repetitions of each classifier. If the null hypothesis is

not rejected, the difference between the algorithms is not

statistically significant [14].

Table I shows mean accuracy results. Table II shows

average AUC results.

TABLE I

MEAN ACCURACY AND STANDARD DEVIATIONS FOR DIFFERENT

CLASSIFIERS APPLIED TO DATABASES

EM VI LDC QDC KNN1 KNN3

MER-DB 86.74±4.86 85.21±3.45 78.43±2.32 69.62±2.56 88.50±2.15 86.50±2.26

ECG-DB 91.12±5.43 90.09±3.18 83.65±2.67 82.77±2.48 89.34±1.26 86.50±2.26

TABLE II

AREA UNDER CURVE FOR ALL CLASSIFIERS

EM VI LDC QDC KNN1 KNN3

MER-DB 0.977±0.014 0.968±0.008 0.599±0.014 0.634±0.015 0.948±0.008 0.886±0.019

ECG-DB 0.988±0.021 0.976±0.003 0.621±0.011 0.687±0.016 0.943±0.010 0.912±0.011

Figure 1 shows the clustered data from ECG database with

EM algorithm. Figure 2 shows the clustered data from MER

database with variational inference.
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Fig. 1. Clustered data from ECG database for EM algorithm. X1 and X2 are
features extracted from approximation coefficients of the first decomposition
level using discrete Wavelet transform. Blue points are normal heartbeats
and green points are the LBBB (Left Bundle Branch Block).
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Fig. 2. Clustered data from MER database for variational inference. X1

and X2 are features extracted from approximation coefficients of the first
decomposition level using adaptive filter banks. Blue points are samples
from Subthalamic Nucleus and green points are samples from Thalamus,
Zone Incerta and Substantia Nigra reticulata.

IV. DISCUSSION

The analysis and results discussion are organized in the

following items:

1) The accuracy results in table I, show a similar accuracy

for some classifiers. The null hypothesis of equal

means between EM, VI, KNN1 and KNN3 is not

rejected. According to this analysis, the difference in

accuracy performances between EM, VI, KNN3 and

KNN1 is not statistically significant for both databases.
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However, VI and EM exhibit better performance than

LCD and QDC.

2) The table II shows the AUC results for all classifiers.

Mean AUC performances for unsupervised classifiers

with EM and VI are superior to mean AUC of para-

metric (LDC, QDC) and non-parametric classifiers

(KNN1,KNN3). This result is highly relevant, because

the AUC is a measurement of true positive ratio in

a classifier. Making a multiple comparison test, we

find that EM and VI do not reject the null hypothesis

of equal means, so they are not statistically different.

But, The null hypothesis of equal means between

the unsupervised classifiers group (EM, VI) and the

standard classifiers group (LDC, QDC, KNN1, KNN3)

is rejected.

3) Figures 1 and 2 show the clustered data for two

features. The separation of features X1 y X2 in both

databases is not linear and we can see an overlap in

many records. The average Rand index of EM is 0.82,

while the rand index for VI is 0.76. This result shows

a better performance in EM than VI. Another problem

is the existence of outliers that disperse the variance

of each Gaussian distribution in the mixture.

4) An important observation is the poor stability of EM

algorithm, since it is sensitive to initial parameters

values. This is because the EM convergence is made

on local minimums. Tables I and II, present a higher

standard deviation in EM than VI. In this work the

initial values of all parameters is random, although it

is possible to establish methodologies that reduce this

issue.

5) Both algorithms (EM and VI) presented convergence

problems due to infinitesimally small values in param-

eters. In some instances less than 10−250. This quanti-

zation difficulty makes the algorithms do not converge,

also it generates singular matrices. To address this, we

normalize the feature matrix X. The normalization of

X affects directly the positive results in learning algo-

rithms either supervised or unsupervised. One possible

alternative is to use regularization methods to prevent

excessively small values in parameters, which can be

further work to refine the proposed methods.

V. CONCLUSIONS AND FUTURE WORK

A considerable advantage of unsupervised learning is that

it does not need a-priori information of class labels for

pattern recognition. In this paper, we applied an approach

composed of Gaussians mixtures and parameter estima-

tion algorithms (Expectation Maximization and Variational

Bayesian Inference) to perform clustering or unsupervised

learning on two real databases. The basic idea is to use the

advantage of Gaussians mixtures and the clustering possi-

bility through responsibility matrix from both algorithms.

For comparison, we employed standard classifiers like the

parametric LDC,QDC and non-parametric KNN. Also, We

performed a Kruskal-Wallis test to compare average perfor-

mances among the classifiers. The difference in accuracy

performances between EM, VI, KNN3 and KNN1 is not

statistically significant for both databases. However, the AUC

performances in EM and VI are superior than the others

classifiers.

The most important difficulty to develop this methods is

the instability of EM algorithm. It is sensitive to initial pa-

rameters values. This is because the EM convergence is made

on local minimums. Also, there were quantization problems

of very small values. For this reason, we normalized the

processed data X. The normalization affected the positive

results in all learning algorithms.

In next works, we propose these methods for multiclass

classification problems.
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