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Abstract— Emotional behavior is an active area of study in
the fields of neuroscience and affective computing. This field has
the fundamental role of emotion recognition in the maintenance
of physical and mental health. Valence/Arousal levels are two
orthogonal, independent dimensions of any emotional stimulus
and allows an analysis framework in affective research. In this
paper we present our framework for emotional regression based
on machine learning techniques. Autoregressive coefficients and
hidden markov models on physiological signals, based on Fisher
Kernels characterization are presented for mapping variable
length sequences to new dimension feature vector space. Then,
support vector regression is performed over the Fisher Scores
for emotional recognition. Also quantitatively we evaluated the
accuracy of the proposed model by acomplishing a hold-out
cross validation over the dataset. The experimental results show
that the proposed model can effectively perform the regression
in comparison with static characterization methods.

I. INTRODUCTION

Human emotion recognition plays an important role

in applications designed for people with disabilities,

physiological medicine, people with some difficulty in

recognizing emotions or interface development of intelligent

environments [4]. Recently, there has been a growing interest

in improving the interaction between humans and computers

(Human Computer Interfaces HCI). This emerging field

has been an interest research for several scientific areas,

i.e., computer science, engineering, psychology, and

neuroscience [20]. Over the past years, neuropsychological

research has produced various theories regarding the

processing of emotion: the basic prototype emotion [5],

right hemisphere (RH) [14] and valence/arousal models [9].

Emotions have been conceptualized as action dispositions

that vary along valence and arousal dimensions [13]. Valence

refers to the pleasant/unpleasant quality of a stimulus and

ranges from negative to positive, whereas arousal refers to

the intensity of a stimulus and ranges from dull to arousing

[8]. Using this bi-dimensional or circumplex model, one

can see how emotions are defined. For example, anger and

sadness are both negative in valence, but anger is high

in arousal, whereas sadness is low in arousal [14]. Facial

expressions and physiological signals, provide the building

blocks to understand emotion. In order to effectively use

facial expressions or physiological signals, it is necessary

to understand how to interpret these signals, and it is also

important to study what others have done in the past.
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Current ongoing research on emotion recognition is

focused on the investigation of specific neurophysiological

signatures for each emotion [2]. Electrophysiological

measurements that assess the human brain activity, such

as EEG seem to be sensitive to emotional states, since

they capture alterations of the brain activity derived from

specific neural networks that play a crucial role in the

occurrence of emotional states such as fear [19]. Yohanes

in [21], proposes to use discrete wavelet transform (DWT)

coefficients as features for emotion recognition from

EEG signals. The proposed feature extraction method fully

utilizes the simultaneous time-frequency analysis of DWT by

preserving the temporal information in the DWT coefficients.

The most commonly employed strategy in automatic

dimensional affect recognition from visual signals is to

reduce the recognition problem to a two-class problem

(positive vs. negative or active vs. passive classification [17]);

or a four-class problem (classification into the quadrants

of 2D arousal/valence (A-V) space [6]). Currently, there

are also a number of works focusing on dimensional and

continuous prediction of emotions from the visual modality.

The work by Gunes and Pantic focuses on dimensional

prediction of emotions from spontaneous conversational

head gestures. The prediction is carried out by mapping the

amount and direction of head motion, and occurrences of

head nods and shakes into arousal, expectation, intensity,

power and valence level of the observed subject using

support vector regression (SVRs) [7].

Kipp and Martin in [11] investigated (without performing

automatic prediction) how basic gestural form features

(e.g., preference for using left/right hand, hand shape, palm

orientation, etc.) are related to the single pleasure, arousal,

dominance (PAD) dimensions of emotion. The work by

Nicolaou et al. focuses on dimensional and continuous

prediction of emotions from naturalistic facial expressions

within an Output-Associative relevance vector machine

(RVM) regression framework by learning non-linear input

and output dependencies inherent in the affective data [16].

In this paper, we propose an emotion recognition system

based on machine learning techniques, in which the signals

that are being analyzed are a physiological response to

multimodal sources (EEG, EOG, plethysmograph, EMG,

GSR, Respiration belt and Temperature). A novel framework

is formulated under the autoregressive hidden markov model

(AR-HMM) that implies the probabilistic dependency
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between sequential biosignals target [18]. The motivation

for its conception was to capture the temporal dynamics by

employing a temporal window. Then a method to map a

variable length sequence to a new fixed dimension feature

vector space is introduced [1]. The mapping is obtained

by the derivatives of the parameters of an underlying

generative model. This new feature space is called the

Fisher score space on which, any discriminative classifier

can be used to perform discriminative training. The main

idea of Fisher kernels is to combine generative models with

discriminative classifiers to obtain a robust classifier which

has the strengths of each approach. Since each Fisher score

space is based on a single generative model, then feature

space is assumed to be suitable for binary classification

problems in nature. Finally, dimensional and continuous

prediction of emotions is a relatively unexplored area in

the field of affective computing, and which prediction

method is best suited to the task is still unknown. Therefore,

we introduced a Support Vector Regression (SVR) to

enable the learning of such correlations and generate more

substantiated predictions by embedding in the model an

initial output estimation (AR-HMM) together with the

Fisher Scores.

The rest of the paper is arranged as follows. Section II

provides a detailed discussion of probabilisic model AR-

HMM. Section III presents our emotion characterization

method using Fisher Scores. Sections IV and V discuss

the experimental setup and results respectively. The paper

concludes in Section VI, with a summary and discussion for

future research.

II. AUTO REGRESSIVE MODEL

An autoregressive (AR) process models the linear depen-

dency that may exist in a given time series. It models the

signal as the output of a linear system driven by white noise

of zero mean and unknown variance [10].

Let the time series training data be: x =
{〈x1y1〉 , 〈x2y2〉 , . . . , 〈xnyn〉} , xn ∈ Mℜ and yn ∈
{1, 2, . . . , C}. Here xn = [xn(1), xn(2), . . . , xn(M)]

T
is

the nth time series of length M , yn is the corresponding

class label and C is the number of classes.

Using an AR model with order P , the value of time series

xn at discrete time t can be represented as:

xn(t) = −
P
∑

n=1

anpxn(t− p) + en(t) = x̂n(t) + en(t) (1)

where en(t) ∼ N
(

0, σ2
)

is the zero mean white noise

with σ2 as variance, and an = [an1, an2, . . . , anP ]
T

are the

AR coefficients.

The autocorrelation function (ACF) of xn at lag p is

estimated using rnp =
∑

t
xn(t)xn(t + p), p = 1, · · · , P

and represented as rn = [rn1, . . . , rnP ]
T

.

The variance of the time series, rn0, estimated using
∑

t
xn(t)xn(t) gives its instantaneous characteristic.

Since en(t) ∼ N
(

0, σ2
)

, the probability density function

(pdf) of xn can be written as:

p
(

xn|an, σ
2
)

=
(

2πσ2
)

−M/2
exp

(

−0.5σ2
M
∑

t=1

e2n(t)

)

=
(

2πσ2
)

−M/2
exp
(

−0.5σ2aTnΣnan

)

(2)

where the autocorrelation matrix, Σn, is defined as

Σn =











1 r1 r2 · · · rp−1

r1 1 r1 · · · rp−2

...
...

...
...

...

rp−1 rp−2 · · · r1 1











(3)

The AR coefficients an can be derived from the autocor-

relation function rn and the autocorrelation matrix Σn as

an = Σ
−

n 1rn.

Therefore, (2) can be written as:

p (xn|rn) ∝ exp

(

−
1

2
r
T
nΣn

−1
rn

)

(4)

III. FISHER KERNELS

A mapping function, φ, that is capable of mapping variable

length sequences to fixed length vectors enables the use

of discriminative classifiers for variable length examples

[1]. Fisher kernel defines such a mapping function and is

designed to handle variable length sequences by deriving

the kernel from a generative probability model. The gradient

space of the generative model is used for this purpose.

A. Fisher kernels for HMMs using continuous density mix-

ture of Gaussians

In emotion recognition problems, HMMs are extensively

used and have proven successful in modeling affective status.

Among different HMM architectures, left-to-right models

with no skips are shown to be superior to other HMM

architectures.

In this work, we have used the AR coefficients as obser-

vations in a left to right HMM with no skips. The parameter

of such an architecture are, prior probabilities of states πi,
transition probabilities, aij and observation probabilities,

bi (Ot) which are modeled by mixture of M multivariate

Gaussians

bi(Ot) =

M
∑

m=1

wimN(Ot;µim,Σim) (5)

where Ot is the observation at time t and wim, µim
and Σim are weight, mean and covariance of the Gaussian

component m at state i, with a total of M Gaussians

components. Hence, Fisher scores are computed from HMM

parameters. The methodology used in this work for Fisher

kernel and scores space is depicted in [1].
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IV. EXPERIMENTAL SETUP

A. Database

In this work we used a multimodal dataset for the anal-

ysis of human affective states called DEAPdataset [12].

The electroencephalogram (EEG) and peripheral physiologi-

cal signals (Electromyography (EMG), Electrooculography

(EOG), Galvanic Skin Response (GSR), Respiration belt,

Plethysmograph and Temperature) of 32 participants were

recorded as each watched 40 one-minute long excerpts of

music videos. Participants rated each video in terms of

the levels of arousal, valence, like/dislike, dominance and

familiarity. The data was downsampled to 128Hz for further

processing.

B. AR-HMM learning and Fisher Scores Derivation

In this step, an HMM is trained for every subject trial. Au-

toregressive coefficients are computed for each physiological

signal and used as observations for HMMs. For a left-to-

right HMM, the prior probability matrix is constant since

the system always starts with the first state with πi = 1.
We use the HMM Toolbox written by Kevin Murphy [15].

This toolbox supports inference and learning for HMMs with

discrete outputs (dhmm’s), Gaussian outputs (ghmm’s), or

mixtures of Gaussians output (mhmm’s). Due to a large

data processing, the Gaussians used was diagonal. Therefore,

1280 HMMs are trained. Each HMM has five states, and a

two mixtures of Gaussians is used in each state. Fisher score

spaces are calculated for each HMM and the discriminative

regression is done via SVR. The SVR runs are performed

with the LIBSVM toolbox [3].

In the experiments, we used training sets for SVR pa-

rameter and kernel selection, and an independent test set

to assess the generalization performance of our method.

To perform subject independent experiments, we applied

fifty fold, hold-out cross-validation. For each regressor in

the experiments, we performed fifty trainings and obtained

results on the validation set, where the average and standard

deviation of root mean square error (RMSE) are reported.

All the decisions for parameter (epsilon, cost, gamma and

degree) and kernel (RBF or Polynomial) selection are given

with respect to the accuracies on the validation set. The

test set is completely independent and never used either

during training. The proposed method is compared against

SVM regression using static features computed over the same

dataset [12].

V. RESULTS

The results in Table I show RMSE values obtained from

Fisher scores for the parameters of the HMMs. The abbrevi-

ations m (Number of Gaussians) and e (Number of States)

refers to the HMM parameters. This method shows better

results when a combination of three states and two Gaussian

mixtures in HMM training is used.

Regressions were performed with the goal of recover-

ing three modalities (Positive-Negative emotions, Pleassant-

Unpleasant Valence and Active-Passive Arousal) with a

hold-out cross-validation scheme. Table II shows the results

TABLE I

EFFECT OF HMM PARAMETERS ON THE EMOTION RECOGNITION

PERFORMANCE (RMSE AND STD VALUES).

Biosignal Set HMM 3e, 2m HMM 5e, 3m

All Bioset 0.6794± 0.0337 0.6991± 0.0165
EEG 0.6716± 0.0429 0.6788± 0.0330
EMG 0.6681± 0.0373 0.6787± 0.0320
EOG 0.6738± 0.0449 0.6878± 0.0371
GSR 0.6737± 0.0438 0.6791± 0.0475
Respiration belt 0.6724± 0.0436 0.6953± 0.0352
Plethysmograph 0.6748± 0.0414 0.6801± 0.0414
Temperature 0.6719± 0.0429 0.6953± 0.0366

obtained for the entire regression experiment over the Fisher

scores and the static features. The results show that when

the dynamic framework for regression was used, biosignals

sets achieve lower RMSE values in comparison with the re-

gression over the Static Features. The active-passive arousal

scheme proved to be more accurate on the arousal regression.

Additionally, it can be seen that regression models trained

with all biosignals provide the lowest RMSE for the arousal

and valence dimension, and the regression models trained

using the EEG and EMG cues provide the lowest RMSE for

the arousal dimension.

In Figure I, we also provide an illustrative comparison

between the RMSE values computed by SVR regarding the

RBF and Polynomial Kernels.

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

SVR Kernel

R
M

S
E

RBF Polynomial

Fig. 1. RMSE values for different kernels used in regression process.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel method for emotion regression

by mapping dynamic physiological signals to a Fisher score

space based on HMMs. HMMs provide a robust method

for recognizing valence arousal levels, by modeling and

processing dynamic data. However, the performance of the

regression model is improved by combining discriminative

models with HMMs which are more suitable in regressions

problems.

The results show a better performance in the regression of

the dynamic features of Fisher scores. EEG signals proved

to be more relevant in the regression process of valence-

arousal levels, which leads to an accurate emotion regression

process. However, other physiological signals such a EMG,
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TABLE II

EMOTION REGRESION PERFORMANCE OF DIFFERENT SCHEMES.

Valence/Arousal Valence Arousal
Biosignal Set Positive Negative Pleasant Unpleasant Active Passive

Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static

All Bioset 0.6806 0.6555 0.7108 0.6874 0.6682 0.6745 0.6002 0.6743 0.6621 0.6745 0.6117 0.6539
EEG 0.7020 0.7061 0.6413 0.6355 0.6799 0.6799 0.6459 0.6629 0.6747 0.6768 0.6410 0.6598
EMG 0.6994 0.7038 0.6417 0.6334 0.6744 0.6765 0.6406 0.6596 0.6750 0.6739 0.6412 0.6570
EOG 0.7050 0.7033 0.6420 0.6329 0.6764 0.6756 0.6426 0.6587 0.6750 0.6754 0.6413 0.6585
GSR 0.7047 0.7058 0.6427 0.6353 0.6764 0.6784 0.6426 0.6615 0.6726 0.6761 0.6390 0.6592
Respiration belt 0.7032 0.6679 0.6416 0.6011 0.6740 0.6365 0.6403 0.6206 0.6741 0.6250 0.6404 0.6094
Plethysmograph 0.7041 0.7060 0.6455 0.6354 0.6762 0.6798 0.6424 0.6628 0.6753 0.6768 0.6416 0.6599
Temperature 0.7020 0.7043 0.6461 0.6339 0.6763 0.6784 0.6424 0.6615 0.6757 0.6743 0.6419 0.6575

EOG, GSR, plethysmograph, temperature and respiratory,

showed significant results. The performance improvement

using multimodal techniques leads to the conclusion that

by adding other modalities such as facial expressions and

speech, accuracy and robustness should further improve.

Due to the dynamic analysis framework for the phys-

iological changes that presents a specific person in their

valence-arousal levels, the proposed methodology has a great

potential in applications derived from emotional regression.

Due to the dimensionality problem of Fisher scores it

would be of high interest to carry out dimensionality re-

duction techniques. Some dimensional reduction methods

depicted in the state of art are principal component analysis,

linear discriminant analysis and recursive feature elimination.

These methods aim to maximize the variance and the class

separability in the new feature space.
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