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Abstract— Real-life signals such as biomedical signals are
non−stationary and random in their pattern, and cannot be
characterized by any specific waveform or spectral content.
Processing of these natural signals involves consideration of
certain significant attributes such as their non-stationary be-
havior over time, scaling behavior, translation invariance. Due
to their random behavior, the existing discriminative methods
often fail to provide a reasonable quantification performance,
thereby resulting in poor classification rates. In order to address
this issue, there exists a need for defining a suitable theo-
retical framework for biomedical signals. We have proposed,
a robust Time−Frequency Nonnegative Matrix Factorization
(TF−NMF) framework that uses sparse representation for
quantification of sleep signals. This scheme incorporates a novel
feature extraction algorithm. For signals that are nonstationary
in nature, the degree of sparsity is lower compared to the
stationary signals. This results into poor classification accuracy.
However our proposed approach has proven that using NMF
as input to the sparse representation for classification will
improve the discrimination performance. Overall, maximum
cross-validation performance of 87.9% was obtained, using
the leave−one−out (LOO) approach for sleep abnormality
detection using EMG signals. Although the computational com-
plexity of the proposed algorithm might be higher compared
to the other similar methods, this TF−NMF based method
shows great potential for quantification and localization of time
varying signals.

I. INTRODUCTION

One of the most important problems in many biomedi-
cal signal processing applications is to find the best rep-
resentation of the data. Many type of signals specially
real−life signals are non-stationary and contain uncertainty
and variability in their pattern, and cannot be characterized
by any specific waveform or spectral content. Processing
of these natural signals involves consideration of certain
significant attributes such as their non-stationary behavior
over time, scaling behavior, translation invariance [1]. Due
to their random behavior, the existing discriminative methods
often fail to provide a reasonable quantification performance,
thereby resulting in poor classification rates.

Reflecting the above problem, a number of studies have
been proposed for designing a suitable theoretical framework
for biomedical signals. One of these methods is to find a
correlation between the time and frequency domains of a
signal, in order to study both time and frequency aspects
simultaneously. The time−frequency (TF) plane provides a
2D signal domain that reveals not only temporal information,
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such as energy, but also frequency trend over time. Therefore,
it is suggested as the most suitable signal plane for analysis
of real−world signals which are random over both frequency
and time. William et al. [2] used TF to represent the event
related potential (ERP) activities. Delorme et al. [3] used
TFD of multi−channel EEG signals for visualization of the
temporal dynamics of the brain activities and interactions.
Although these researches are beneficial in the area of visu-
alization of the event of interest, their performance depends
heavily on the matrix decomposition [4]. In one approach
the TFD is interpreted as a matrix decomposition, in which
a decomposition is applied to the TF matrix [5]. However, a
suitable TF representation provides non-negative TF values,
in order to produce meaningful features for representation
of time varying signals in biomedical applications. Although
this approach successfully analyzes the non-stationarity of
the signal, its performance depends heavily on the matrix
decomposition. One of these decomposition methods is Non-
Negative Matrix (NMF) decomposition. NMF decomposes
the TF signal into two components in a way that one
contains the spectral structures and the other contains the
corresponding temporal location of each spectral structure
[4]. These are used as the TF feature vectors. In general NMF
is used for local feature extraction. This is very beneficial
when dealing with long term signals such as sleep signals,
in which the expert can locate the abnormal behavior without
analyzing 8 hours long data.

In this paper we have proposed a new method using
TF-NMF for selection of the decomposed signal based on
the level of sparsity to overcome the problem of high
dimensionality of the signal. Using this proposed method
along with the sparse representation for classification (SRC),
the accuracy of 87.9% has been obtained which is the highest
in comparison with other similar methods when dealing with
EMG signals in Sleep. More details about the techniques
used are presented in the Methodology section. The block
diagram of the proposed method is also shown in Fig 1.

II. METHODOLOGY

A. Wavelet Scalogram

Wavelet scalogram is based on wavelet decomposition
where orthonormal basis functions with different scales are
used to decompose the signal [6]:

VCWT (t, s) =
1√
s

∫
x(τ)g(

τ − t
s

)dτ (1)

where g( ts ) is the mother wavelet and s is the scaling param-
eter which corresponds to the size of each basis functions.
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Fig. 1: Block Diagram of the Proposed method

We consider this TF transform, V (t, s), as a matrix VM×N ,
where N is the number os samples in time and M is the
frequency resolution of the constructed TF-transform. In gen-
eral, wavelet scalogram displays the TF structure obtained
from the wavelet transform. In scalogram, each wavelet
signal is plotted as a filled rectangle whose its location and
size are related to the time interval and the scale range
for this wavelet signal. Additionally, scalogram provides a
positive and cross-term free TF representation. Although
this approach successfully analyzes the non−stationarity in
the data, its performance heavily depends on the quality of
the matrix decomposition (MD) technique. Therefore, we
investigate the Nonnegative Matrix Decomposition (NMF)
as related to TF quantification.

B. Nonnegative Matrix Factorization (NMF)

There are many matrix decomposition techniques available
including Independent Component Analysis (ICA), Princi-
pal Component Analysis (PCA) and Non-negative matrix
factorization (NMF). These have become an active area of
research for extracting features in machine learning, com-
puter vision, and signal processing [7]; however, depending
on the application and the data, different results have been
reported. Some works demonstrated the advantages of ICA
to NMF and PCA. Lee et al. compared the result of PCA,
NMF and ICA for feature extraction from multiple video
frames [8] and showed that ICA-based features result in
better video representation than the PCA or NMF-based
features. In another study, the authors show that NMF is
more stable for larger basis compared to ICA and PCA [9].

In general once the signal is transformed to the TF plane, if
the TF representation is of the form VM×N the decomposed
signal is VM×N = WM×rHr×N =

∑r
i=1 wihi, where V is

the TF matrix, W is the base and H is the coefficient vectors
and r is the rank of the NMF Decomposition. This decom-
position is in a way that W represents the signal structure
and the H represents the location of the corresponding base
vectors in time. With respect to the application used, NMF

compared to ICA and PCA has more advantages which as
listed below:

• NMF is applied to a nonnegative matrix and constrains
the matrix factors W and H that are also nonnegative,

• NMF decomposed factors promise a higher TF repre-
sentation and localization,

• NMF codes naturally favor sparse, parts-based repre-
sentations which in the context of recognition can be
more robust than non-sparse, global features [7].

The problem with this technique is that the extracted
feature vectors have a very high dimension. This is because
the length of each feature vector is proportional to the
signal’s sampling frequency, and as a result they are not
very appealing for classification. However, some variation
of NMF is subject to additional constraints that allow partic-
ularly accurate control over sparseness and, indirectly, over
the localization of features. Our proposed approach for this
dimensionality reduction is first representing the signal in a
linear subspace using sparse representation. Although a part
based representation such as NMF is based on the low−rank
approximation, the role of sparse representation here is
simplifying the signal to its most meaningful components
[10]. In order to achieve the best separability, one need
to modify the sparse approximation methods such that the
objective function is enhanced with a discrimination term
that represents the separability properties of the signals. In
this paper we have analyzed the bases signal, W , from the
decomposed matrix using the sparsity measure.

C. Sparsity Measure

In signal representation, the definition for sparsity is given
in many different ways. The definition used for sparsity in
this work is one in which energy of the signal is concentrated
in small number of non-zero coefficients. In general, the
measure of sparsity depends on the relative distribution of
energy among the coefficients, and should not solely be
calculated on the absolute value of each coefficient. As a
matter of fact, a good measure of sparsity has to be a
weighted sum of coefficients based on the importance of a
particular coefficient in the overall sparsity [11].

In most of the current literature, sparsity is measured using
the `0 norm of a vector. If the original signal X has N
samples in the spatial domain and has M number of zeros
in it, it is said to be K-sparse, where K = N −M . When
X has no nonzero elements but has M elements which have
magnitudes which are small, then the above definition can
be extended to “approximate K-sparsity” [11].

One of the measures of sparsity that is analyzed in this
paper is as follows [12]:

Sp(x) = (
1

Cp
)(
( 1
n−1 )

∑n
i=1 |xi −m|p

1
n

∑n
i=1 |xi|p

)
1
p (2)

where

m = (
1

n
)

n∑
i=1

xi (3)
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and
Cp = (

(n− 1)p−1 + 1

np−1
)

1
p (4)

The default value for p is chosen to be one and n is the
length of the spatial signal. The advantage of this sparsity
measure is that is it based on the normalized value compared
to the other conventional methods that are based on the
convectional norm measures. The value that the Sp(x) takes
is between 0 and 1 for any vector. The sparsity is one if and
only if a vector contains a single non-zero components, and
is zero if and only if all the components are equal. In other
words, the sparsity is zero if all the coefficients have equal
amount of energy and is one if the concentration of energy
is only on one value. This gives us a meaningful measure,
exhibiting the sparsity of the distribution.

D. Sparse Representation for Classification

Following the introduction of sparse theory, many different
approximation tools have been developed for different tasks.
Choosing a representation that offers the most compact
solution for further analysis and/or decision making is the
main principle behind these techniques [13]. Recent research
in sparse approximation involves obtaining optimal signal
approximation for signal discrimination or signal reconstruc-
tion. Hence, the sparsity of different types of signals have
not been fully analyzed for these type of application. The
algorithm that was used in this work is briefly as follows
[12]: let A be the matrix and each column of which is the
training samples from the ith class. The elements of this
matrix is a set of feature vectors that have been produced
from transforming the signal into TF plane and from there
to an NMF algorithm with a rank of r = 50. y is the new
testing samples, in which a linear representation of y can
be rewritten in terms of all training samples as y = Ax. If
the representation can be converted into finding a column
vector x such that y = Ax and most of the values of x is
zero then the problem is so called sparse representation. We
use cross validation to randomly split the data into distinct
matrix for training and testing. Once the system is trained
with the training signals we test it using the `1 minimization
problem for sparse representation as in Eq 5

x̂1 = argmin‖x‖1 subject to:Ax = y (5)

The leave−M−out (LMO) cross validation, validates the
correctness of the results (for special case we only use LOO),
when only M number of samples are left out and the output
is the average of correctly identified.

III. EXPERIMENTAL RESULTS

A. Algorithm

In this paper, we presented a method for classifying
nonstationary time series utilizing a feature set based on
time frequency representation followed by nonnegative fac-
torization. This was then further analyzed using sparsity
measure and sparse representation for classification. The
proposed scheme for real biomedical signals analysis and
discrimination can be briefly characterized by the following

steps and the block diagram of the proposed method is given
in Fig1:

Preprocessing: In this study we have utilized the sleep
dataset that was provided to us from the SunnyBrook Health
Science Center. The sleep dataset consists of signal segments
from 8 chin EMG signals (4 with normal behavior and 4 with
Rapid eye movement Behavior Disorder (RBD)) undergone
the sleep test. A traditional scoring system for sleep has been
established [14], with the electrophysiological parameters
of EEG, EOG and EMG. The system used for recording
chin EMG signals during sleep includes 3 relatively midline
electrodes, one above the jaw line, one below the jaw line
and one back-up electrode. The two electrodes are typically
subtracted from another to eliminate artifacts shared by both
electrodes. In this study, a subject is defined as historically
normal if there is no history of any violent behavior during
the night sleep; otherwise it is considered as abnormal.

Higher Dimensional Mapping:The preprocessed signal
is then mapped to the TF representation , using the wavelet
scalogram, and a transformed signal have been obtained.
The frequency resolution of this transformed function is 150
(scale is from 1 : 150) and the time samples are 1000
elements. The advantage of using wavelet scalogram is that
it uses an adaptive varying time width defined by the scaling
parameter. Another important advantage of scalogram is that
it provides positive and cross-term free TF representation.

Feature Extraction: The transformed signal matrix is then
decomposed into two matrices, W the bases matrix and H
the coefficient matrix. In this work we have used W as the
feature vector since it is good for local feature extraction
and classification. The rank of the matrix is chosen to be
r = 50, as the results show that NMF yields the lowest
recognition rate for decomposition dimensions of less than
50 (r < 50). Because of the high dimensionality of the NMF,
we have proposed to use the degree of sparseness. Sparse
non-negative matrix factorizations (NMFs) are useful when
the degree of sparseness in the non-negative basis matrix or
the non-negative coefficient matrix in an NMF needs to be
controlled in approximating high-dimensional data in a lower
dimensional space.

Classification: Based on the feature space the normal
and abnormal RBD classes are defined. The feature vectors
along with the class definition together are fed into sparse
representation for classification. In this step the influence
of both training and testing sample size on the design
and performance of pattern recognition systems has been
investigated by using sparse representation incorporated with
LOO approach. This method is believed to be one of the most
optimized validation approaches with least biased estimate
[15]. The presentation of the underlying theory has been
complemented with examples with real time sleep signals
and results on the application of these data are validated
based on the degree of sparsity measure and classification
accuracy.

For comparison, we have compared our proposed method
with the other previous methods [12][16]. This have been
shown in Fig. 2. Although our proposed method is unstable
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Fig. 2: Block Diagaram of the Proposed method

Signal M = 1 M = 50% Sparsity
Sleep 87.9% 50% 0.73

TABLE I: Result of classification performance of the pro-
posed scheme

when leaving half of the samples out (M = 50%), but it
shows a better classification accuracy for LOO.

IV. DISCUSSION

The REM EMG signal was first randomly segmented to
smaller segments. Each of these segments were then fed into
a TF plane using Daubechies wavelet scalogram. This 2D
representation was then used as the input of the NMF de-
composition. The bases vector of the NMF, W was then used
as feature vectors. The extracted feature vectors were used to
discriminate the REM sleep into Normal and RBD classes.
However, before using the SRC classification algorithm, the
sparsity of the feature vectors were measured. If the sparsity
of the feature vector was below some threshold (60%), the
respective segment was discarded for classification and the
next segment was used. Thereby increasing the classification
accuracy. After the respected segments were found they were
used as the input to SRC algorithm. The results show that the
accuracy decreases drastically as the value of M increases.
Therefore, the highest accuracy is achieved when the sparsity
is high as well as when we use the LOO approach. Using
our proposed scheme a maximum overall accuracy of 87.9%
(using LOO) is achieved.

From the results, it can be verified that the TF−NMF
based analysis offers new insight to suitably represent a
nonstationary signal in the joint time-frequency space using
sparse representation. Also it is evident that the proposed
feature extraction succeeds in discriminating the normal from
the abnormal REM sleep signals using the LOO approach.
Table I illustrates the details of the results.

V. CONCLUSION

In this study we have presented a robust TF−NMF based
sleep quantification scheme using sparse representation for
classification that incorporates sparsity measures and novel
feature analysis algorithm. For signals that are nonstationary

in nature, the degree of sparsity is lower compared to the sta-
tionary signals. This result into poor classification accuracy.
However our proposed approach has proven that using NMF
as input to the sparse representation for classification will
improve the discrimination performance. Overall, maximum
cross-validation performance of 87.9% was obtained, using
the LOO approach. Although the computational complexity
of the proposed algorithm might be higher compared to the
other similar methods, this TF−NMF based method shows
great potential for analysis and sparse quantification of the
time−varying signals. Despite of the fact that this is a prelim-
inary studies that employ TF-NMF analysis using SRC, for
sleep signal quantification, a proper TFD would be eventually
desirable for accurate feature localization applications.
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