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Abstract— Epileptic seizure detection and epilepsy diagnosis
based on feature extraction and classification using electroen-
cephalography (EEG) signals is an important area of research.
In this paper, we present a simple and effective approach
based on signal decomposition, using a novel variation of
the Empirical Mode Decomposition called Empirical Mode
Decomposition-Modified Peak Selection (EMD-MPS). EMD-
MPS allows time-scale based de-trending of signals, allowing
signals to be separated directly into a de-trended component,
and a trend, according to a frequency separation criterion.
Features are extracted from the decomposed components, and
a simple classifier, namely the 1-NN classifier is used for
three classification tasks. The technique is tested on a publicly
available EEG database, and a classification accuracy of 99%
for epilepsy diagnosis task, and 100% and 98.2% for two seizure
detection tasks is obtained. These results are better than, or
comparable to previous results using the same EEG database,
but have been obtained with a simpler and computationally fast
signal analysis and classification method.

I. INTRODUCTION

Epilepsy is a neurological disorder affecting a very large
number of people worldwide [1]. There is considerable
research concerned with computer-based methods for seizure
detection and epilepsy diagnosis using electroencephalog-
raphy (EEG) signals [2] . Given the non-linear and non-
stationary nature of EEG signals, signal processing meth-
ods for non-stationary signal analysis, such as empirical
mode decomposition (EMD), time-frequency analysis, and
wavelets, have been frequently used for automated seizure
detection using EEG signals, e.g. [1][2][3][4]. The adaptive
nature of EMD-based decomposition methods makes them
particularly suitable for non-linear signal analysis [5].

We previously proposed a novel modification to the EMD
algorithm named empirical mode decomposition-modified
peak selection (EMD-MPS) [6]. In the EMD-MPS method,
the sifting process of EMD [7] is modified to use intelligent
peak selection in short-time windows of length τ . Based on
different values of τ , different decompositions of a signal
into what we term as τ -functions are possible. Therefore
the short-time window acts as an operator which allows
separation of different frequency components in a signal into
τ -functions, as determined by the length τ of the short-time
window. We have previously established a relation between
the frequency components decomposed and the value of τ ,
and have shown that using an appropriate selection of values
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of τ allows a novel time-scale based de-trending of signals
[6].

In this paper, we present a novel method based on the
EMD-MPS method for epilepsy diagnosis and seizure detec-
tion using EEG signals. The first part of our methodology
consists of using EMD-MPS to decompose EEG signals into
a de-trended component, and a trend, using a frequency
separation criterion. Features are then extracted from the two
decomposed components, which form feature vectors used
for classification using a simple classifier, namely the 1-NN
classifier. The next sections will provide more details of the
proposed method.

II. EMPIRICAL MODE DECOMPOSITION-MODIFIED PEAK
SELECTION

EMD-MPS uses the sifting process to decompose a signal.
However, a criterion for choosing the extrema based on short-
time windows of length τ is used. Let us define an operator
W τ
i (·), i = 1...k, i ∈ Z, 0 < τ < L,L ∈ R, which, given

a signal x[n] of length L, produces the i-th τ -function Ti,
such that Ti[n] = W τ

i (x[n]), as given in Algorithm 1.

Algorithm 1 EMD-MPS Algorithm
1: Choose a short-time window τ .
2: For each interval τ over the whole signal length, iden-

tify the highest/lowest from among the maxima/minima
within τ .

3: Find the upper and lower envelopes En(U) and En(L) by
interpolating all maxima/minima identified (one maxima
and minima each per τ ).

4: Calculate the local mean of the upper and lower en-
velopes En(mean) =

En(U)+En(L)

2 .
5: Update x[n] by subtracting the mean from it x[n] ←
x[n] − En(mean). Continue the previous steps till a
stopping criterion is met, at which point x[n] is reduced
to a τ -function T1.

6: Subtract T1 from x[n] to get a residue r[n].
7: Take r[n] as the starting point instead of x[n], and repeat

the previous steps of the algoritm till all τ -functions Ti
in the signal are found.

The coarse-grained τ -functions may contain different co-
existing modes of oscillation, each superimposed on the
other, due to the short-time window τ setting an upper limit
on the periods of the oscillations that can be included in any
given τ -function obtained using the EMD-MPS method. This
limit is determined by :

F =
Fs
τ

(1)
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where Fs represents the sampling frequency.
As an example for this relation, a value of τ=25 (in sam-

ples) corresponds to a frequency value F=40 samples/second
for Fs=1000 samples/second. Using this value of τ , only one
peak (maxima and minima each) in each 25 sample interval
will be used in the envelope formation, and the sifting
process should then decompose all F ≤ 40 samples/second
oscillatory components, and let all components with F >
40 samples/second pass through un-decomposed in one τ -
function. Due to the non-linear nature of decomposition and
mode-mixing phenomenon [7], the frequency separation does
not represent a sharp cut-off. Additionally, in practice the
value of τ is qualified by a scaling constant k, such that
τ̂ = kτ , and 0 < k ≤ 1. The relation in Eq. 1 and the scaling
constant k have been empirically validated using fractional
Gaussian noise in our previous works [6].

III. METHOD

The next subsections will present different aspects of the
proposed methodology for EEG signal classification in the
context of epilepsy diagnosis and seizure detection.

A. Data

The EEG signals used in this paper come from the data
made public by the University of Bonn [8]. The data consists
of EEG signals in five sets named A, B, C, D and E. Signals
in sets A and B are from epilepsy free volunteers, whereas
signals in sets C, D and E come from epilepsy patients. The
signals in sets C and D have been recorded during epilepsy-
free intervals, with set E containing only seizure signals. In
each set there are 100 scalp EEG signals of 23.6 seconds
duration sampled at 173.61 Hz, with each signal having 4097
samples, and a spectral bandwidth ranging from 0.5 Hz to
85 Hz. This data has been used in numerous previous studies
(e.g. [2][3][4][9]), but in general many of the previous studies
have tested classification only between sets A and E, and
between sets ABCD and E. For this paper, we apply our
methodology to test binary classification in the following
three scenarios:

1) Classification between sets A and E. This is the most
commonly used scenario in previous works, and has
bee used to test the efficacy of proposed methodologies
for seizure detection.

2) Classification between sets AB and CD. This is used
to test performance of the method in classifying sig-
nals mixed with different observational conditions or
recordings at different spatial locations. Also, this sce-
nario is relevant for the case of epilepsy diagnosis, as
sets AB contain normal signals, and sets CD epileptic
signals.

3) Classification between sets ABCD and E. This is
relevant in terms of a seizure detection scenario, and
also has relevance for clinical applications [3].

B. Decomposition using EMD-MPS

EMD-MPS is used for a time-scale based de-trending of
EEG signals, such that each EEG signal is decomposed

into one τ -function T1 representing the de-trended signal
containing the higher frequency components, and another
τ -function T2 representing the trend of the signal. This is
done by appropriate selection of a value of τ according to
Eq. 1, and does not require estimation of a trend model
for model-based de-trending, or knowledge of the statistical
properties of IMFs, as is the case for EMD-based de-trending
approaches proposed in literature, e.g. [10]. Further, EMD-
MPS decomposition into two τ -functions is computationally
faster compared to EMD decomposition into at most log2(N)
IMFs [7], where N is the length of the signals, followed
by partial reconstruction of IMFs back into a de-trended
component and the trend [10].

A value of τ for decomposition of EEG signals using
EMD-MPS was found as follows. First, a frequency sepa-
ration value of F=8 Hz was chosen, such that T1 contains
frequency components with frequency values greater than 8
Hz, and T2 represents the trend containing frequencies lower
than 8 Hz. Due to space limitations, the details of choice
of F=8 Hz are not provided here, but it was objectively
selected based on the highest classification accuracy obtained
compared to other values of frequency separation evaluated.

Using Eq. 1 and the signals’ sampling frequency value of
Fs=173.16 Hz, the value of τ obtained for F=8 Hz is given
by τ=21.6. However, for decomposition, we have to use the
value τ̂ , which is τ scaled by a constant k as described in
Section II. A good estimate for the value of k is given by
k ≈ 0.44 [6], such that τ=21.6 corresponds to value of τ̂=9.5.
Therefore, all EEG signals were decomposed using τ̂=9.5.
In this regard, Fig. 1 shows an example EEG signal from set
C, and the τ -functions T1 and T2 obtained with a value of
τ̂=9.5.

C. Extraction of Features and Classification

After decomposition of the EEG signals into two τ -
functions each, a total of four features are extracted. One
feature is extracted from the τ -functions, and the remain-
ing three from the frequency-domain representation of the
τ -functions obtained using the discrete Fourier transform
(DFT). Computationally fast implementations of the DFT
algorithm are available in different software packages, hence
our approach is expected to be computationally more effi-
cient than time-frequency and wavelet decomposition based
approaches, e.g. [2][4].

The discrete Fourier transform (DFT) of both τ -functions
Ti results in a complex-valued function F̂i. The real-valued
single-sided amplitude spectrum of the τ -functions, given by
f̂i, is then obtained by taking the absolute value of F̂i. Three
features are subsequently extracted from f̂i.

The four extracted features are listed below:

1) The energy Ei of the τ -functions Ti, given by:

Ei =

N∑
n=1

T2
i [n], i = 1, 2 (2)

where N is the length of Ti.
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Fig. 1. (Left) EEG signal from an epilepsy patient (from set C). (Middle) τ -function T1, representing de-trended signal. (Right) τ -function T2, representing
the trend. These τ -functions have been obtained using a value of τ=21.6 (τ̂=9.5) corresponding to a frequency separation value F=8 Hz.

2) The sum of the amplitude spectrum, Sf̂i , calculated as:

Sf̂i =

M∑
n=1

f̂i[n], i = 1, 2 (3)

3) The sparsity of the amplitude spectrum, SPf̂i , calcu-
lated as:

SPf̂i =

√
M − (

∑M
n=1 f̂i[n])/

√∑M
n=1 f̂

2
i [n]

√
M − 1

, i = 1, 2

(4)
4) The sum of derivative of the amplitude spectrum, Df̂i

,
calculated as:

Df̂i
=

M−1∑
n=1

ˆ́
fi[n]2, i = 1, 2 (5)

where ˆ́
fi[n] = f̂i[n+ 1]− f̂i[n], for n = 1, ...,M − 1,

and M is the length of f̂i.
We have previously used features SPf̂i and Df̂i

for patholog-
ical speech classification [11], achieving a high classification
accuracy. EEG signals from healthy subjects are expected to
have higher values for the sparsity feature SPf̂i compared
to values from epileptic patients. This is due to SPf̂i distin-
guishing the non-frequently occurring transient components
in epileptic signals from the normally occurring frequency
components in non-epileptic signals. However, in order to
reduce the number of feature vectors, we extract this feature
only from τ -function T2, which represents the low frequency
trend of the EEG signals. This way, any abnormal activity
occurring in the lower frequency range contained in the trend
will be captured as a discriminative feature.

Similarly, the feature Df̂i
is a good measure of abrupt

changes and discontinuities in the signal representation in
the frequency domain, which are expected to occur more
frequently in epileptic signals. This feature is extracted from
the τ -function T1, which represents the de-trended part of the
signals, and contains higher frequency components, where
abrupt changes and discontinuities are more likely.

IV. RESULTS

The four features described in the previous section were
used to form feature vectors in order to test classification

between the sets in the three scenarios. In order to keep the
overall methodology simple, a 1-NN classifier was chosen,
and classification results estimated using the ten-fold cross
validation method. The classification results thus obtained
for the three scenarios are shown in Table I, and discussed
in the next sections.

A. Classification between sets A and E

The classification accuracy obtained for classification be-
tween sets A and E was 100%, thereby matching the results
in recent works [2][3], and improving on previous results
(e.g. as listed in [2]). Importantly, however, the 100% clas-
sification accuracy in our work has been obtained using
just a single feature, namely Sf̂i , the sum of the amplitude
spectrum. This demonstrates the efficacy and simplicity of
our approach, as well as the utility of approaches based on
adaptive signal decomposition.

B. Classification between sets AB and CD

The classification between EEG signals from healthy sub-
jects (sets AB) and epileptic patients (sets CD) is relevant
in terms of epilepsy diagnosis, and a 99% classification
accuracy is obtained for this case using all four features.
This is comparable to the 100% classification accuracy
presented in [2], which is one work where this classification
case is considered, using wavelet variances as features in
conjunction with a 1-NN classifier.

Furthermore, it was found that removing the feature vector
of feature Ei obtained from τ -function T2 did not affect
the classification accuracy. Hence only 5 feature vectors
were used to obtain the classification accuracy of 99%.
Also, to check the effectiveness of the extracted features in
discriminating between EEG signals from sets AB and CD,
we performed un-paired t-tests of the null hypothesis that the
feature values obtained from the τ -functions extracted from
signals of both sets have the same mean. The p-values thus
obtained for the five feature vectors used for classification
confirmed rejection of the null hypothesis for all cases.
In this regard, the boxplot in Fig. 2 shows distribution of
values for the used features, and also shows the p-values
obtained by the un-paired t-tests. It can be concluded that the
combination of all used features determines the effectiveness
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TABLE I
CLASSIFICATION ACCURACY FOR THE 3 SCENARIOS (SECTION III-A)

USING 1-NN CLASSIFIER AND 10-FOLD CROSS-VALIDATION

Sets: A & E AB & CD ABCD & E
Classification Accuracy: 100% 99% 98.2%

in discrimination between signals from healthy subjects and
epileptic patients.

AB CD
S
f̂i

(T1 )

1.32 e-32

AB CD
S
f̂i

(T2 )

0.0034

AB CD
D

f̂i
(T1 )

2.1 e-34

AB CD
SP

f̂i
(T2 )

1.28 e-7

AB CD
Ei (T1 )

3.87 e-35

Fig. 2. Boxplots showing the distribution of values of features from the
signal sets AB and CD. These features have been extracted from τ -functions
as shown in the figure. The difference in the distribution of feature values
obtained from signals in both sets was confirmed using un-paired t-tests,
with the resulting p-values also shown. (Note: e-x means ×10x)

C. Classification between sets ABCD and E

Classification between sets ABCD and E represents the
case of seizure detection. For this scenario, and using the
same five feature vectors as described in Section IV-B, a
classification accuracy of 98.2% was obtained. This result
improves on the classification accuracy of 97.73% presented
in [4], and is comparable to the classification accuracy of
98.27% presented in [3]. Both of these results, however,
have been obtained with more involved signal analysis
methods used with complicated classifiers, namely time-
frequency analysis with feed-forward artificial neural net-
work in the case of former, and multi-wavelet transform and
entropy feature with multi-layer perceptron neural network
(MLPNN) for the latter. Our result is also comparable to
the classification accuracy of 100% presented in [2], which
has been obtained with wavelet variance features extracted
after wavelet decomposition of the signals and using a 1-NN
classifier. In comparison with the methodology of [2], our
signal analysis method is computationally more simple and
adaptive, as the decomposition does not require finding an
appropriate basis.

V. CONCLUSIONS

This paper presented a novel method of EEG signal
analysis that can be used for epilepsy diagnosis and seizure
detection using a simple classification scheme. The signal
analysis method is based on a novel decomposition scheme,
which is characterized by its computational simplicity and

adaptivity. Features are extracted from the decomposed com-
ponents of the signal, and a 1-NN classifier is used to
obtain high classification accuracy for different classification
tasks. The classification results obtained are better than
or comparable to other approaches using more involved
signal analysis methods and complicated classifiers. A very
important advantage of our method is the flexibility of
decomposition and feature extraction, since decomposition
is based on a frequency separation criterion, and different
features may be extracted from the τ -functions. This allows
the method to be ported to a different set of biomedical
signals in a different domain, as we have demonstrated in
the context of mental task classification using EEG signals
[12]. Further extensions of this work include application to
other EEG data sets, and evaluation of different feature sets
to further improve the classification accuracy.
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