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Abstract— Single-trial electroencephalography (EEG)-based 

emotion recognition enables us to perform fast and direct 

assessments of human emotional states. However, previous 

works suggest that a great improvement on the classification 

accuracy of valence and arousal levels is still needed. To address 

this, we propose a novel emotional EEG feature extraction 

method: kernel Eigen-emotion pattern (KEEP). An adaptive 

SVM is also proposed to deal with the problem of learning from 

imbalanced emotional EEG data sets. In this study, a set of 

pictures from IAPS are used for emotion induction. Results 

based on seven participants show that KEEP gives much better 

classification results than the widely-used EEG frequency band 

power features. Also, the adaptive SVM greatly improves 

classification performance of commonly-adopted SVM classifier. 

Combined use of KEEP and adaptive SVM can achieve high 

average valence and arousal classification rates of 73.42% and 

73.57%. The highest classification rates for valence and arousal 

are 80% and 79%, respectively. The results are very promising. 

I. INTRODUCTION 

Since the discovery that the frontal asymmetry of 
electroencephalography (EEG) based signals can help 
differentiate between positive and negative emotions [1]-[2], 
EEG-based emotion recognition has been a critical 
to-be-solved issue in many research fields ranging from 
developing a human-centered human-computer interface to an 
emotion monitoring system in the health care contexts. 
However, emotion recognition is a highly complex and 
difficult pattern recognition problem [3], especially when 
EEG signals are the only system input type and other 
commonly-used neurophysiological measures (skin 
conductance, electrocardiogram, blood pressure) are ignored 
[17]. Thus, many labs have recently attempted to solve the 
problem of EEG-based emotion recognition by proposing 
various methods [6]-[17]. 

Discrete emotion [4],[5] and the bi-dimensional emotion 
[2] models have been widely adopted to operationally define 
the scope of emotions. In discrete emotion models, several 
emotion types including anger, fear, happy, sadness, disgust 
and surprise are commonly identified as basic emotions [4], 
[5]. In contrast, the bi-dimensional model categorizes 
emotional states in a 2-D feature space spanned by valence 
and arousal, which results in four emotional categories: 
high-valence-high-arousal (HVHA), low-valence- 
high-arousal (LVHA), low-valence-low-arousal (LVLA), and 
high-valence-low-arousal (HVLA). Methods based on 
discrete emotion models aimed at classifying a set of discrete 
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emotional states [6]-[11], while methods based on the 
bi-dimensional model aimed to solve two kinds of binary 
classification problems for valence (pleasant vs. unpleasant) 
and arousal levels (high vs. low activation) [12]-[17]. 

TABLE I. PREVIOUS EEG-BASED WORKS ON EMOTION CLASSIFICATION 

Ref. Tasks CR (%) 

[6] happy, sad 93.25 

[7] 
happiness, surprise, anger, fear, disgust, 

sadness 
88.33 

[8] 
anger, boredom, confusion, contempt, 

curious, disgust, eureka, frustration 
82.27 

[9] joy, anger, pleasure, sad 75.97 

[10] joy, sad, neutral 74 

[11] joy, relax, sad, fear 66.51 

[12],[13] valence classification, arousal classification 32 and 37 

[14] valence classification 47.11 

[15] valence classification 66.7 

*[16] valence classification, arousal classification 90 and 85 

*[17] valence classification, arousal classification 92.8 and 89.2 

*non-single trial study 

Current literature suggests that the classification r is better 
for the discrete emotion models [6]-[11] than the 
bi-dimensional emotion model [12]-[15]. Despite the 
difference of definition, the emotional states defined in the 
discrete emotion models can be located within the 
valence-arousal space in the bi-dimensional emotion model. 
For example, both “angry” and ”disgust” fall into the same 
category - LVHA. In valence classification, both HVHA and 
HVLA belong to the positive class while LVHA and LVLA 
belong to the negative class. Since each of the two classes 
includes multiple discrete emotional states, EEG patterns of 
each class are inherently distributed with a much larger 
variation than those of a single discrete emotion in the space of 
patterns. Thus, despite that various factors (e.g., gender, 
experience of subjects, electrode layout, type of emotional 
stimulus, length of EEG epoch, signal processing, extracted 
features, classifier design) can influence the EEG-based 
emotion recognition accuracy, the valence or arousal 
classification [12]-[15] generally resulted in poorer accuracy 
than the classification between discrete emotional states 
[6]-[11](Table I).  

Both valence and arousal classification are critical in 
developing an emotion recognition system to evaluate and 
even monitor the emotional states of people with affective 
disorders. The valence classification allows for a direct 
approach for negative emotion (low-valence) detection, and 
the arousal classification further evaluate the activation level 
(high or low) of the detected negative emotion. Moreover, 
single-trial EEG-based emotion recognition is more efficient 
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and practical for a real-time emotion monitoring system in 
clinical settings. However, the classification performance of 
single-trail EEG-based methods [12]-[15] has not been 
satisfactory (Table I). Hence, the development of more robust 
algorithms is of urgency and primary importance. 

To address this critical issue, we propose a novel EEG 
feature extraction method - kernel Eigen-emotion pattern 
(KEEP), and modify the widely-used classifier SVM to be 
adapted to the imbalanced emotion-EEG data sets. The KEEP 
is based on EEG frequency band powers and the kernel 
principal component analysis (kernel PCA) [18]. It not only 
extracts higher-order statistics across multiple EEG band 
powers and electrode locations, enabling effective 
representation of complex emotion-triggered oscillatory brain 
activity, but also reduces the dimension of input vectors. The 
adaptive SVM proposed in our lab [21] can achieve better 
generalization performance than regular SVM and solve the 
problem of learning from imbalanced EEG data sets, which 
avoid the so-called class-boundary-skew problem [19]-[20] 
that would drop the classification performance of regular 
SVM in emotion recognition. The combined Use of KEEP and 
the adaptive SVM significantly improve the classification 
accuracy for both valence and arousal classification. 

II. METHOD 

A. Participants 

Seven college participants (20~24 y/o) with normal or 
corrected-to-normal vision participated in this study. All 
participants have no neurological or psychological medical 
history. Before experiments, we obtained informed consent 
from each participant. 

B. Apparatus 

Stimulus presentation was controlled by a personal 
computer, which was connected with the EEG recording 
system. All visual stimuli were presented on a 17-inch CRT 
screen and subjects were seated on a fixed chair at the 
position so that their eyes were 〜57 cm in front of the 

display. EEG signals were recorded from 64 electrodes 
mounted on an electro-cap (Quick-Cap 64, NeuroScan), in 
which two electrodes were references positioned at bilateral 
mastoids. Locations of all electrodes follow the international 
10-20 system. Impendence of all electrodes was kept below 5 
  . Ocular artifacts were monitored by horizontal (HEOR, 
HEOL) and vertical (VEOH, VEOL) bipolar EOG electrodes 
for later off-line rejection. Both the EEG and EOG channels 
were recorded with a band-pass filter of 0.05 to 100 Hz and a 
gain setting of 1000 using a NuAmps amplifier (NeuroScan, 
Inc.). Raw EEG signals were digitized with a sampling rate of 
500 Hz. 

C. Stimuli and Tasks 

A set of pictures from International Affective Picture 
System (IAPS) were used to induce emotions from 
participants. The pictures in IAPS system were all rated in 
terms of the perceived valence and arousal levels and were 
divided into four categories: HVHA, LVHA, LVLA, and 
HVLA. We selected a pool of 100 pictures with 25 pictures 
for each category from IAPS. Fig. 1 shows the distribution of 
some examples of the selected pictures in the 2-D emotion 

space, where the 2-D coordinate of each point represents the 
valence and arousal values of a picture. 

 

 
Figure 1.  Distribution of examples of the pictures selected from IAPS in the 

2-dimensional space spanned by valence and arousal. 

D. Emotion-induction Experiment 

The emotion-induction experiment (100 trials) is illustrated 
in Fig. 2. Each trial started with a 2-sec trial-ready cue 
followed by a 2-sec resting period during which subjects were 
instructed to passively stare at the center fixation cross and try 
not to think anything on purpose. Subsequently, a 7-sec 
picture-display period was presented and participants were 
instructed to try to engage themselves into the emotion that a 
given picture may represent. At the end of each trial, 
participants psychometrically evaluated the perceived 
emotion and categorized it as one of the four categories in the 
valence-arousal space. Finally, participants were instructed to 
press any key on a keyboard after completing the 
self-assessment task to start the next trial in which a different 
picture was presented during the picture-display period.  

 2 sec     2 sec  7 sec  subject defined

 One trial  Next trial

 One EEG epoch

ready ready

 

Figure 2.  Emotion-induction experiment adopted in this study. 

E. Data Labeling 

EEG data from all 100 trials were used for single-trial based 
emotion recognition. EEG segmentation was performed in a 
time-locked fashion: the 7-sec emotion-induction related EEG 
epoch of each trial was segmented from the recorded EEG 
using the stimulus codes that have been embedded into the 
data stream within each trial. The label of each EEG epoch 
was determined by participants’ subjective psychometric 
evaluation. Therefore, for a given emotional picture, the 
induced subjective emotion sometimes did not agree with the 
original emotion category recorded in IAPS in our study, as 
has also been reported in [13]. Thus, labels of some EEG 
epochs were not identical to the pictures’ original categories in 
IAPS. For analyses, the EEG epochs labeled as HVHA and 
HVLA (HVHA and LVHA) were treated as positive data, and 
epochs labeled as LVHA and LVLA (HVLA and LVLA) were 
treated as negative data for valence (arousal) classification. As 
summarized in Table II, the data sets for either valence or 
arousal are all imbalanced.  
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TABLE II. EEG DATA LABELING RESULTS 

Participants 
Valence classification Arousal classification 

# positives # negatives # positives # negatives 

P1 38 52 73 27 

P2 54 46 68 32 

P3 56 44 66 34 

P4 51 49 67 33 

P5 43 57 57 43 

P6 52 48 63 37 

P7 56 44 66 34 

 

F. Emotional EEG Feature Extraction based on KEEP 

For a 7-sec EEG epoch, five frequency band powers are 
calculated using Discrete Fourier Transform, including theta 
(4–8 Hz.), alpha (8–13 Hz.), low beta (13–20 Hz.), high beta 
(20–30 Hz.) and gamma (30–45 Hz.). The band powers 
extracted from all 62-channel EEG epochs are concatenated to 
form an n-dimensional EEG band power (BP) vector x , 
where n=310. The vector is then sent to kernel PCA for further 
feature extraction. Kernel PCA method consists of offline 
training stage and online testing stage.  

Training stage. Suppose that a training set 
Mi

n

i
R

,...,1
}{


x

is given, where M is the size of the set. The data are mapped 
into a higher-dimensional feature space F via a nonlinear 

mapping FR
n
: , and are centered to have zero mean: 

 


M

i i1
0)(x . Please refer to Appendix B of [18] for details 

of the mapped-data centering method. Then kernel PCA 
solves the eigenvalue problem: 
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Testing stage. For the purpose of dimensionality reduction, 
d eigenvectors associated with the first d largest nonzero 
eigenvalues are chosen as the projection axes such that 

nd   and Md  . For a testing EEG BP vector x, its 

projection onto the kth eigenvector 
k

v  is computed by 
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where 
k

z  is its nonlinear principal component corresponding 
to  . Since k=1,…,d, the d nonlinear principal components 

form a vector Td
zz ),...,(

1
z , which is the kernel 

eigen-emotion pattern (KEEP) for the multi-channel EEG 
recording during emotional processing. In this study, the 

Gaussian kernel )2exp(),(
22

yxyx K  is used as the 

kernel function, where   is the kernel parameter. The 

number d of the chosen eigenvectors and   can be optimized 

by means of cross validation. 

G. Classification based on Adaptive SVM (ASVM) 

Given a training set   Miyz
ii

,...,1,,  , where d

i
Rz   

are training data, and 
i

y  are class label being either +1 or -1, 

let the weight vector and the bias of the separating hyperplane 
be w  and b, the objective of SVM is to maximize the margin 

of separation and minimize the errors in the feature space, 
which is formulated as the constrained optimization problem: 
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where 
i

  are slack variables representing training errors, and 

C is the penalty weight. Since C is the same for both positive 
and negative classes, the learned separating hyperplane would 
be skewed toward to the smaller class, resulting in poor 
classification accuracy. The basic idea of adaptive SVM is to 

introduce different error costs 
C  and 

C  for the positive 

and the negative class. If the size of positive class is larger, 

then set  
 CC ; otherwise 

 CC . The adaptive SVM 

can be formulated as 
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where 
i

  are Lagrange multipliers. The training data for 

which 
 C

i
0  or 

 C
i

0  are support vectors (SVs). 

The class label for an unseen pattern z  can be obtained by the 
decision function of adaptive SVM: 
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where 
o

b  is the optimal bias, which can be determined by 

taking any training data whose 
 C

i
0  or  

 C
i

0  

into the Kuhn-Tucker (KT) conditions. Finally, if 0)( zD , 

the data z belongs to positive class; negative class otherwise. 
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III. RESULTS 

Here we compare the results of different combinations of 

feature extraction methods and classifiers. The best two-fold 

cross validation results of the combinations are listed in Table 

III and IV. Comparison between BP+NN with BP+PCA+NN 

show that the most widely-used PCA method in the BCI 

community did improve the accuracy of BP for both valence 

and arousal classifications, while the improvement is limited. 

In contrast, KEEP gives a significant improvement. Therefore, 

kernel PCA seems to be much more suitable than PCA in 

terms of feature extraction and dimensionality reduction for 

emotional EEG classification. The discrepancy can actually 

be explained by the different natures of the two methods. 

PCA is essentially a linear subspace method. However, EEG 

signal is non-stationary, and thus the EEG patterns are most 

likely nonlinearly distributed in the pattern space. Hence, 

performance of PCA would be limited due to its linear nature. 

On the contrary, since kernel PCA diagonalizes the data 

covariance in a nonlinear mapping induced feature space, the 

eigenvectors are nonlinearly related to the EEG patterns in the 

original space. Therefore, kernel PCA can better extract 

nonlinear characteristics of EEG patterns.  

TABLE III. VALENCE CLASIFICATION RATES (IN %) 

 P1 P2 P3 P4 P5 P6 P7 Ave 

BP+NN 56 61 54 52 63.1 77 43 58.01 

BP+PCA+NN 58 63 59 58 64.2 77 49 61.17 

KEEP+NN 66 68 70 66.1 67 79 64 68.58 

BP+SVM 72 74 64 59 75 77 56 68.14 

KEEP+SVM 70 73 70 71 76 80 67 72.42 

KEEP+ASVM 72 75 71 72 76 80 68 73.42 

TABLE IV. AROUSAL CLASIFICATION RATES (IN %) 

 P1 P2 P3 P4 P5 P6 P7 Ave 

BP+NN 63 55 53 45.9 49 53 60 54.12 

BP+PCA+NN 64 54 57 48 52 55 61 55.85 

KEEP+NN 73 69 72 69 60 66.1 69 68.30 

BP+SVM 73 69 71 67 57 63 68 66.85 

KEEP+SVM  74 70 74 70 63 68 69 69.71 

KEEP+ASVM 79 75 78 73 65 72 73 73.57 

Furthermore, we can observe from Table III and IV that 

KEEP+ASVM performs better than KEEP+SVM, especially 

for the case of arousal classification where KEEP+ASVM 

outperforms KEEP+SVM by 3.86% (73.57-69.71). This can 

be understood by looking back at Table II: the data sets 

prepared for arousal classification are much more imbalanced 

than those prepared for valence classification. In summary, 

the highest classification rates for valence and arousal are 

80% (participant 7) and 79% (participant 1), respectively, and 

are obtained by KEEP +ASVM. Also, KEEP+ASVM gives 

the best average classification accuracy for both valence 

(73.42%) and arousal (73.57%) classifications. To our best 

knowledge, the two results are the highest among the results 

reported in the current literatures in terms of single-trial 

EEG-based emotion recognition.  

IV. CONCLUSION 

In the current study, we have demonstrated that the 
combined use of KEEP and adaptive SVM show promising 
performance outcomes in emotional valence and arousal 

classifications. Nevertheless, future works are needed to 
further improve the current emotion recognition accuracy. 
For example, replacing the currently-used band power by 
other more robust spectral or spectral-temporal features (e.g., 
power spectral entropy and wavelet features) or proper 
channel selection may lead to better classification accuracy. 
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