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Abstract— In this paper, we study machine learning tech-
niques and features of electroencephalography activity bursts
for predicting outcome in extremely preterm infants. It was
previously shown that the distribution of interburst interval
durations predicts clinical outcome, but in previous work the
information within the bursts has been neglected. In this paper,
we perform exploratory analysis of feature extraction of burst
characteristics and use machine learning techniques to show
that such features could be used for outcome prediction. The
results are promising, but further verification in larger datasets
is needed to obtain conclusive results.

I. INTRODUCTION

Preterm birth is an important cause of neonatal mor-
bidity and mortality world wide [8]. Increasing numbers
of extremely preterm born infants are surviving, however
with high incidence of neurodevelopmental impairment [9].
There is an urgent need for improved monitoring of brain
function in this population in order to identify brain damage,
to direct care and in a future potentially also to provide
early neuroprotective interventions. Electroencephalography
(EEG) is a recording of brain derived voltage gradients over
the scalp and provides an approach to assessment of brain
function in real time.

The normal preterm EEG is characterized by high voltage
activity bursts, also named spontaneous activity transients
(SATs), alternating with relative inactivity (interburst inter-
vals, IBI) of low voltage [7], see Fig. 1. Such bursts are
crucial for early brain development and may provide an
opportunity for studies of early brain function development
[10]. It should be empathized that bursts (or SATs) in this
context refer to a normal physiological event, distinct from
the pathological burst-suppression pattern of full term infants
or older subjects after major cerebral insults [3].

There is so far no clear definition or even description
of preterm bursts. In previous literature, bursts have often
been numerically defined as activity of a certain duration
and amplitude above a defined threshold. This is in contrast
to routine clinical detection of bursts which relies on visual
pattern recognition. Consequently, detection of bursts may
vary somewhat among raters [4], two different labelings
of the same signal are possible and this can influence the
interburst interval, shown in Fig. 1.

Previous studies have shown that reduced numbers of
bursts and prolonged IBIs during the first postnatal days

Fig. 1. Two possible labelings of burst and interburst intervals in the same
recoding epoch. Bursts are underlined.

are indicators of acute brain dysfunction predictive of poor
neurological and cognitive outcome [5], [11]. In future clin-
ical studies, we aim to test the hypothesis that not only the
durations (or number) of bursts and IBIs contain clinically
valuable information, but also the detailed characteristics of
bursts themselves may contain such information as well. In
this paper, we study a number of burst features and use
machine learning to examine the predictive properties of
features in a pilot sample. A study flow chart is shown in
Fig. 2.

II. DATA AND PREPROCESSING

The dataset consisted of one-channel EEG recordings dur-
ing the first three postnatal days of 14 previously described
extremely preterm infants belonging to a larger study cohort
[11], [2], 23-30 weeks gestational age. Eight infants had good
outcome and six had poor outcome, defined as neurodevel-
opmental impairment according to psychological testing and
neurological examination at two years age. Written informed
consent was obtained from all parents and the Regional
Ethics Committees in Lund approved the research protocol.
Voltage gradients between standardized electrode locations
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Fig. 2. A flow chart of the study.
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Fig. 3. Signal before and after filtering. The thin blue line is the original
signal. The thick red line is the signal after filtering. Note that the low
frequency components have also been removed from the signal by the band-
pass filter.

P3 and P4 (reference Cz) according to the International 10-
20 System were recorded, at sampling frequency 256 Hz
using a Nervus/NicOne 3.3 EEG system with U16 amplifier
(Natus Medical Incorporated, San Carlos, CA). Recordings
were reviewed (filter between 0.5 and 70 Hz, sensitivity
100 microvolt/cm, timebase 30 mm/s) by two independent
experienced clinical neurophysiologists who marked at least
100 bursts from each patient during the second postnatal day.
Artifacts (e.g., technical interference or movement artifacts)
were also marked and removed during preprocessing of the
signal. To remove noise, we applied a notch filter at 50 Hz,
together with a band pass filter on the interval from 0.5 to
70 Hz. Fig. 3 shows the signal before and after filtering.

III. FEATURES

In this article, six features are calculated trying to capture
different aspects of the signal. For each patient each burst
is handled individually, and calculated these six features
for each burst. Basically, we choose these features in the
sense of they complement each other, and independent from
one another. Two of these features (Spectral edge frequency
and Shannon entropy) have been previously described by

Löfhede [6], for the purpose of identification and segmen-
tation of pathological burst-suppression patterns. We also
introduced four novel features as presented below.

A. Sharpness

There are quick turns in burst signals compared to inter-
burst. Thus for each burst signal, we find local minima and
maxima of the signal, and calculate the angle of each peak,
then use the mean value of these as a feature. This is shown
in Fig. 4. Since interburst is more flat than burst, we believe
that sharpness is a characteristic feature.

B. Number of peaks

For each burst, we count the number of local extrema of
the signal. As aforementioned, burst signals have more peaks
as compared with interburst.

C. Spectral edge frequency (SEF)[6]

SEF 95 is the frequency under which 95 % of the signal
power resides, it is calculated based on Fourier transform.

D. Ripple Sharpness

The bursts are typically built up by very slow (low
frequency) waves with superimposed high frequency compo-
nents [10], here called ripples. To capture this phenomenon
the signal is decomposed into two components. The slow
wave is approximated by applying a median filter of length
15. The ripples are then extracted as the difference between
the median filtered signal and the original signal, see Fig. 5.
The feature we used is the mean angle of the peaks of the
ripples.

In future analysis, we will compare ripples during bursts
with frequencies of the interburst intervals, to ascertain the
biological signal and to be able to filter out even more noise.

E. Burst duration

The elapsed time for each burst.
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Fig. 4. The peaks and angles of a burst. Here EEG signal is shown in black
and each red circle indicates a local extremum. The angle, θ is emphasized.

F. Shannon entropy [6]

Entropy is a measure of uncertainty associated with a
random variable and used as a measure of signal complexity.
For measure Shannon entropy of signal S, we take the signal
into n = 20 bins and calculate

−
n∑

i=1

p(Si) log p(Si), (1)

where p(Si) is the probability mass function of Si.

IV. CLASSIFICATION

In this paper, we use machine learning techniques for
automatic classification of outcomes based on features and
for assessment of feature usefulness.

The usual machine learning pipeline consists of calculating
feature vectors based on the input data. Ideally each feature
individually depends only on corresponding class. In practice
the correlation between features and classes are complex and
this is where classifiers comes in.

The classifier uses the features as input and makes a
prediction of which class the data comes from. In this study
we have opted to use random forests as our classifier.

Random forest [1] has several advantages. It is fast and
relatively robust to noise. It is also possible to assess how
important the different features are and how certain the
classifier is on each decision.

Random forest belongs to the class of bagging classifiers
which combines the results from many simple classifiers
into one classifier. As the name hints random forest bags
decision trees. Each decision tree is constructed by randomly
sampling two thirds of the data. The last one third of the data
is left out as the so called out-of-bag (OOB) data. The final
classifier is simply the majority vote of the bagged decision
trees.

Each tree gives a vote on which class it believes the data
belongs to and by counting the votes a measure of confidence
can be constructed.

The importance of any features is measured by scrambling
the feature, and then calculating how much worse the predic-
tion becomes (on the OOB set). In Section V, the importance
is measured as mean decrease in accuracy (on the OOB set).

Assume that we have a two class problem with equal
amount of examples from both classes and one perfect
feature. The perfect feature would give a 100 % correct
classifications, and scrambling the feature would lowering
the importance, thus would be give an accuracy of 50 % on
average (random assignment).

Due to the small size of the dataset, we use the leave-
one-out paradigm for training and testing. One patient was
held out and used for testing while all other patients were
used to build the classifier. For each burst, we keep the votes
of every tree. In the end, we let the majority vote over all
tree to make the classification. This was repeated for each
patient, thus producing 14 classifiers.

V. RESULTS

In Table I, we list the features used for classification
and their importance in descending order, the accuracy was
71.4 % (i.e., correctly classified ten out of fourteen patients).
The importance is calculated as mean over each of the
14 classifiers constructed during leave-one-out testing. We
can see promising decrease in classification error for some
features, while other features like Shannon entropy probably
have no positive effect on the classification. Note that in
this test we use no information from the interburst length
characteristics.

TABLE I
CLASSIFYING USING OUR FEATURES. IMPORTANCE IS MEASURED AS

MEAN DECREASE IN ACCURACY.

Features Importance (accuracy)

Sharpness 14 %
Spectral edge 7.0 %
Ripple Sharpness 6.6 %
Number of peaks 3.9 %
Burst duration 3.2 %
Shannon entropy 1.0 %

As a reference we also train a random forest only on
interburst interval information. Two aspects of the interburst
interval in relation to outcome in extremely preterm infants
have previously been examined: The median duration of
interburst intervals and the fraction of the total recording
duration consisting of interburst intervals [11]. Using only
these two as features for the random forest and leave-one-out
classification we obtain an accuracy of 57.1 % (i.e., correctly
classified eight out of fourteen patients), the importance is
given in Table II.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied EEG signal burst charac-
teristics in a pilot dataset from 14 extremely prematurely
born infants. From each burst six features were extracted
and random forest techniques were used for classifying
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Fig. 5. Example of what the ripple looks like. The signal is decomposed into two parts and features are calculated on the ripple part.

TABLE II
CLASSIFYING USING FEATURES OF INTERBURST INTERVALS.

IMPORTANCE IS MEASURED AS MEAN DECREASE IN ACCURACY.

Features Importance (accuracy)

Median duration 4.7 %
Fraction 1.9 %

outcome based on the features of each individual burst,
and for all bursts of each patient. The results are promis-
ing with precision of about 70 % on leave-one-out tests,
which compares favorably to only considering durations of
interburst intervals. This is a preliminary indication that the
physiological EEG bursts do contain prognostic information.
The study sample is, however, too small to draw conclusions
about the exact predictive ability of this novel method.

If combined with development of automated burst detec-
tion [6], [4], the present method could make it possible to
follow development of burst characteristics over time, i.e.,
real time monitoring. Such technical support would facilitate
an objective analysis sensitive to changes that today may
be overlooked in visual pattern recognition assessment. It
may also support earlier detection of neural dysfunction
when there still is time to act clinically. Consequently,
further development of reliable burst detection methods,
feature extraction and machine learning methods for burst
and interburst analysis may improve outcome prediction and
diagnostic ability.

Thus for the future we would like to (i) develop fast,
automatic and reliable burst detection methods, (ii) collect
a larger dataset of patient data with known outcomes and
(iii) further develop and evaluate feature extraction methods
and machine learning methods for the analysis of both burst
characteristics and interburst interval distribution analysis for
improved outcome prediction and diagnostic assistance.
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Technology, 2009.

[7] M. Andre, MD. Lamblin, AM. d’Allest et al. Electroencephalogra-
phy in premature and full-term infants. Developmental features and
glossary. Neurophysiol Clin, 40(2):59-124, May 2010.

[8] S. Beck, D. Wojdyla, L. Say et al. The worldwide incidence of preterm
birth: a systematic review of maternal mortality and morbidity. Bull
World Health Organ , 88(1):31-38, Jan 2010.

[9] S. Johnson, J. Fawke, E. Hennessy, et al. Neurodevelopmental
disability through 11 years of age in children born before 26 weeks
of gestation. Pediatrics, 124(2):e249-257, Aug 2009.

[10] S. Vanhatalo, K. Kaila. Development of neonatal EEG activity: from
phenomenology to physiology. Semin Fetal Neonatal Med, 11(6):471-
478, Dec 2006.

[11] S. Wikström, IH. Pupp, I. Rosén, E. Norman, V. Fellman, D. Ley, L.
Hellström-Westas . Early single-channel aEEG/EEG predicts outcome
in very preterm infants. Acta Paediatr, 101(7):719-26, 2012 Jul.

4298


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

