
  

 

Abstract— The purpose of this paper is to determine whether 

electroencephalograpy (EEG) can be used as a tool for hearing 

impairment tests such as hearing screening. For this study, we 

recorded EEG responses to two syllables, /a/ and /u/, in Korean 

from three subjects at Gwangju Institute of Science and 

Technology. The ultimate goal of this study is to classify speech 

sound data regardless of their size using EEG; however, as an 

initial stage of the study, we classified only two different speech 

syllables using Gaussian hidden markov model. The result of 

this study shows a possibility that EEG could be used for 

hearing screening and other diagnostic tools related to speech 

perception.  

I. INTRODUCTION 

Electroencephalography (EEG) is the electric fields 
produced by brain activity [2]. The ranges of its amplitude and 
frequency are 10~200uV and 1~50Hz, respectively. EEG was 
first recorded by Hans Berger in 1942, and generally is divided 
into delta, theta, alpha, beta, and gamma waves according to 
frequency range [3].   

Through measured EEG values, it is possible to acquire 
brain activities that respond to external stimuli like sound,  
light, pain, and so on [2]. For this reason, there has been 
increasing interest in EEG classification for using the Brain 
Computer Interface (BCI) and various diagnostic tools.  

For a good EEG classification, we should carefully 
consider the following two elements. First, we should choose 
appropriate EEG feature vectors. In order to design 
EEG-based BCI, a lot of features have been used. The 
representative features are EEG amplitudes, band powers (BP), 
power spectral density (PSD), autoregressive coefficient (AR), 
adaptive autoregressive coefficient (AAR), and so on [4]. 
Second, selecting an appropriate classifier is as important as a 
feature vector selection [4]. There are several types of 
classifiers, depending on their nature.  A well-known standard 
to divide classifiers is a generative vs. discriminative classifier 
[4]. The generative classifier calculates the likelihood of each 
class and selects the class that shows the most probability. 
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Bayes quadratic classifier is the most representative example 
of the generative classifier. On the other hand, the 
discriminative classifier does not use joint probability but 
directly classifies the features to each class. Support vector 
machine which is most popularly used in BCI is one of 
discriminative classifiers. Another taxonomy of classifiers is a 
static vs. dynamic classifier [5]. The static classifier does not 
use temporal information, but the dynamic classifier uses 
temporal information [4]. Since temporal information is a very 
important characteristic in almost all EEG feature vectors, a 
dynamic classifier such as the hidden markov model (HMM) 
is a suitable classifier in EEG classification problem [6]. 
Therefore, to classify EEG signals in this study, we used 
Gaussian hidden markov model (GHMM), which is a 
modified version of hidden markov model. 

Additionally, it is necessary to remove noise before 
extracting feature vectors from EEG since it has a very low 
SNR. When we use an EEG feature vector, the noise which we 
should generally consider is electrooculogram (EOG), 
electromyogram (EMG), electrocardiogram (ECG), motion 
artifact and white noise [7, 8]. Band-pass filtering, fast fourier 
transform (FFT), autocorrelation, autoregressive modeling, 
adaptive filtering, Kalman filtering, and singular value 
decomposition (SVD) are generally used for noise cancelation 
in the signal processing field[9]. In the present study, we used 
independent component analysis (ICA) for noise removal with 
the Hurst exponent. In brief, ICA is an algorithm for dividing 
signals into statistically independent components, and the 
Hurst exponent automatically finds out the noise components 
[2, 9]. We will cover detailed descriptions of the ICA and 
Hurst exponent in Section III.  

The objective of this paper is to classify the EEG signals 
which respond to two syllables, /a/ and /u/, using Gaussian 
hidden markov model with the independent component 
analysis for noise removal. In conclusion, the results of this 
paper present a possibility to use EEG as hearing screening 
and other diagnostic tools related to speech perception.  

This paper is organized as follows. In Section II, we will 
explain why we chose such stimuli and how the stimuli were   
delivered to the subjects. Next, Section III will provide 
information on the preprocessing for rejecting noise such as 
EOG, ECG, and white noise.  In Section IV, we will deal with 
in detail Gaussian hidden markov model as a classifier. Lastly, 
Section V will give the result of the experiment and a simple 
analysis. 
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Figure 1 Difference in formant frequencies in vowels. 

Data points for /i u a æ/ are averages from Peterson and Barney 

(1952)[1]. 

 

Figure 2. Trial time course for a single trial. Stimulus /a/ or /u/ was randomly presented during the stimulus session. EEG waveforms were recorded only 

during the ‘eye-open’ stage (pre-stimulus (0.5sec), stimulus (approximately 1sec), post-stimulus (1.5sec)). 

II. STIMULUS SELECTION & DATA COLLECTION 

A. Stimulus Selection  

For a good classification of EEG responses to speech 
sounds, we should carefully select the speech stimuli. One 
factor we can consider when choosing a stimulus is formants. 
According to T. W. Picton et al., EEG waveforms which 
respond to speech follows the envelope of the sound [10]. In 
acoustics, the peaks found in the spectrum envelope of sound 
are called formants [11]. It is reasonable, therefore, that we 
select stimuli that have completely different formants to make 
them more classifiable. In case of vowels, they can be 
classified according to their articulatory characteristics such as 
the tongue body position, e.g., high, low, front, and back [1]. 
Each class of vowels, due to their vocal tract configurations, is 
associated with its consequent acoustic characteristics, e.g., 
high vowels - low first formants, back vowels - low second 
formants. Since /u/ and /a/, high-back and low-back vowels, 
respectively, show large difference in their first formant 
frequencies, (Figure1)[12] we expect to see better 
performance in classification with EEG response waveforms. 
For these reasons, we selected two vowels /a/ and /u/ as our 
test stimuli. All of the speech sounds used in this paper was 
provided by Naver standard pronunciation service 
(http://dic.naver.com/), which had been reviewed by the 
National Institute of the Korean Language for a six-month 
period. 

 

B. Stimulus Presentation & Recording 

 As mentioned above, EEG is extremely vulnerable to 
noise. Especially EOG artifact is the most dominated noise in 
EEG waveform. To avoid EEG contamination by the EOG in 
the recording stage, we divided the recording procedure into 
‘eye-open’ and ‘eye-closed’ stages and only recorded EEG 
waveforms during the eye-open stage. (Figure2) Since the 
subject cannot know when the eye-closed stage ends, a 

pre-test was prepared for the subject to get familiarized with 
the experimental procedure before the main experiment. 
Stimuli /a/ and /u/ were randomly presented in order to prevent 
the subject’s prediction of the following stimulus. We 
presented 60 trials of vowel stimuli in a single session and two 
sessions of the experiment were conducted for a total of 120 
trials of vowels per subject. All of the EEG data were recorded 
in the Department of Medical Science and Engineering 
(DMSE) at Gwangju Institute of Science and Technology, and 
the recording device was a 64 Channel EEG Net by Electrical 
Geodesics Inc. Volunteer subjects were three men.  

III. PREPROCESSING 

A.  Basic Preprocessing 

Preprocessing is a very important procedure for acquiring 
a meaningful EEG feature vector in classification problems. 
The first and foremost thing to consider in the preprocessing 
procedure is EMG artifact rejection. Generally, EMG artifact 
in EEG is dominated in frequencies above 20 Hz,[13] so IIR 
bandpass filter was adapted to the raw EEG signal (band 
width: 2-20 Hz, butterworth, order: 5). Next, we detrended the 
data to eliminate a linear trend of the signal, and adapted 
baseline correction using pre-stimulus data.  

B. Independent Component Analysis  

A lot of noise still remains in the EEG waveforms after the 
basic preprocessing procedure, so additional processes are 
needed for removing residual noise. Recently, approaches 
using the ICA algorithms have become popular for mitigating 
the effect of noise in biomedical signals [9]. According to 
Hoya et al. [14], classification accuracy was greatly increased 
using ICA. Before adapting the ICA to EEG signals, modeling 
the EEG procedure was imperative. It is well-known that a 
linear model is suitable for EEG [15]. The formula can be 
expressed as follows:  

 Fs(t) + w(t) x(t) 

Where s(t) = [s1(t) s2(t) ….. sm(t)]
T
 is an m-dimensional 

unknown source vector;  x(t) = [x1(t) x2(t) … xn(t)]
T
 is  an 

n-dimensional vector of observed sensor signals; F is a 
forward model which is an (n × m) unknown mixing matrix; 
and w is a vector of white Gaussian noise. There are a number 
of methods to solve the inverse problem for finding the 
forward model. One of the methods is the ICA, which 
estimates the mixing matrix F by decomposing the EEG 
signals into statistically independent components [2].  
According to Scott makeig et al. [16], each ICA component 
may represent activities generated from different biological 
sources. Therefore, it is possible to acquire meaningful EEG 
data through an ICA algorithm by reconstructing components 
after rejecting the components that are irrelevant to EEG. In 
this paper, we selected the FastICA algorithm due to its 
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Figure 4 Schematic diagram of HMM Classifier 

 

Figure 3. Preprocessing procedure. 

 

Figure 6 Classification accuracy according to the feature delay. Delay 

(0ms, left), Delay (200ms, middle), Delay (400ms, right). y-axis means 

the classification accuracy and red line means the median of data, 

subject LKJ 

 

Figure 5 Classification accuracy according to the feature length, feature 

length (200ms, left), feature length (500ms, middle), feature length (1s, 

right), y-axis means the classification accuracy and red line means 

median of data, subject LKJ 

efficient computation time[17].  

 s(t) F
-1

x(t) = Sx(t)  

 According to Aapo Hyvarinen, FastICA finds the separation 
matrix S that maximizes the non-Gaussianity of projection 
data using the fixed-point iteration scheme [17]. 

The following procedure is repeated until S converges:  

1. Set random values as the initial S.

2. E{xg(S
T
x)} – E{g’(S

T
x)}S => S’, where function g is the 

derivative of a non-quadratic function.   

3. Let S’/∥S’∥ => S.  

4. Check whether S converges or not.  

After decomposing the data into independent components, we 
needed a procedure to identify the noise components. Since 
EEG data have high dimensionality, it is very difficult to 
manually inspect noise components. Therefore, we used the 
Hurst exponent to automatically identify the noise 
components  Vorobyov and Cichocki mentioned that the 
Hurst exponent of the components that are contaminated by 
ECG and EOG signals is 0.58 - 0.69 Therefore, we 
evaluated the Hurst exponent of all components, then rejected 
the components which were within the 0.58 – 0.69 range. 
Figure 3 is a simple diagram of the preprocessing. 

 

IV. CLASSIFICATION 

For classifying the EEG data which responded to speech, 
HMM was used in this study because the HMM classifier is 
suitable for classifying time series data [4]. Performance of 
HMM in classifying time series data is very good, so even raw 
EEG data are classified well [18]. Figure4 is a basic diagram 
of HMM classifier. Classification steps were divided into 
training and testing phases. The objective of the training phase 
was to construct a model that shows the maximum likelihood 
of observed vectors. The class of the observed vectors was two 
types (/a/ EEG and /u/ EEG), and therefore, a total of two 
HMM models were needed. Each model HMM(/a/) and 
HMM(/u/) was updated from /a/ and /u/ EEG data, 
respectively, using Baum-Welch algorithms. In the testing 
phase, an unknown class of EEG data was used as the input for 
HMM /a/ and HMM /u/. Finally, HMM classified the 
unknown EEG to the class of the model that shows a greater 
likelihood than the other. Since Gaussian Hidden Markov 
Model (GHMM) is generally appropriate for EEG 
classification problem, [18] we used GHMM in this paper.  

V. RESULT 

Since HMM classifier is a statistical process, it was 

necessary to iterate each classification process ten times to 

evaluate general performance of the classifier. A total of 100 

trials were used to evaluate the performance of the classifier 

and divided into 80 trials for the training phase and 20 trials 

for the testing phase. Figure5 shows the change of 

classification accuracy according to the length of a feature. 

As shown in Figure5, feature length of 200ms shows the best 

performance. Althogh performance for 200ms and 1s were 

similar, when considering computation time, we determined 

the 200 ms as the optimal feature length.  

Another factor we selected is delay. To find the optimal 

delay, we tested the classification in 0ms, 200ms, 400ms 

respectively. As a result, The classifier shows the best in 

200ms delay. (figure6)  According to T. W. Picton et al., brain 

responses follow the envelope of speech with about a  200 ms 

delay that is consistent with the result of this study.[10]  
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Repeating the previous process, we obtained data from 

three subjects. As shown in Table 1, all the results are above 

chance level. Especially, subject PCK shows a surprising 

result a median value greater than 95%.  

TABLE I.  CLASSIFICATION ACCURACY FOR EACH SUBJECTS 

Subject Median 25
th

 percentile 75
th

 percentile 

LKJ 80 % 65 % 85 % 

PCK 95% 90% 100% 

JDR 85% 75% 90% 

 

 

VI. DISCUSSION & CONCLUSION 

Because of low SNR of the EEG, classifying EEG 

responses to speech sounds was very difficult; therefore for 

extracting speech representation from EEG, we adopted some 

signal processing techniques. Since there is no clear standard 

for selecting interesting sources related to speech stimuli, we 

defined a standard for selecting phoneme responses prior to 

using signal processing techniques. Generally, it is well 

known that the Hurst exponent of ECG and EOG is 0.58 -0. 

69; therefore we decomposed EEG responses into 

independent components using ICA, and then reject the 

components which were within the 0.58 – 0.69 range. 

Althogh this is just two class classification problem, brain 

responses to two Korean vowels were classified in very high 

accuracy using hidden Markov model classifier. This means 

that ICA is a useful method to extract speech-related 

components from EEG. We consider that the components 

which are extracted using ICA may provide an insight for 

phoneme representation in the brain because they contain 

some distinct information about brain response to each vowel, 

thus enabling successful classification as reported. In future 

studies, we will try to classify the brain responses to many 

types of vowels which have very close formants to each other.  

We expect that this algorithm could be used for Brain 

Computer Interface (BCI), diagnosis and rehabilitation of 

diseases related to hearing. 
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