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Abstract² Emotions are fundamental for everyday life 

affecting our communication, learning, perception, and 

decision making. Including emotions into the human-computer 

interaction (HCI) could be seen as a significant step forward 

offering a great potential for developing advanced future 

technologies. While the electrical activity of the brain is 

affected by emotions, offers electroencephalogram (EEG) an 

interesting channel to improve the HCI. In this paper, the 

selection of subject-independent feature set for EEG-based 

emotion recognition is studied. We investigate the effect of 

GLIIHUHQW�IHDWXUH�VHWV�LQ�FODVVLI\LQJ�SHUVRQ¶V�DURXVDO�DQG�YDOHQFH�

while watching videos with emotional content. The 

classification performance is optimized by applying a 

sequential forward floating search algorithm for feature 

selection. The best classification rate (65.1% for arousal and 

63.0% for valence) is obtained with a feature set containing 

power spectral features from the frequency band of 1-32 Hz. 

The proposed approach substantially improves the 

classification rate reported in the literature. In future, further 

analysis of the video-induced EEG changes including the 

topographical differences in the spectral features is needed. 

I. INTRODUCTION 

MOTIONS are fundamental for everyday life affecting 

our communication, learning, perception, and decision 

making. While playing a central part in the human-to-human 

communication, including emotions into the human-

computer interaction (HCI) could be seen as a significant 

step forward offering a great potential for developing 

advanced future technologies. The task is, however, 

challenging as our scientific knowledge about the topic is 

still limited. Novel approaches for automatic recognition, 

processing, interpretation, and simulation of human 

emotions are therefore needed. 

Humans express emotions via different channels, such as 

facial expressions, speech, and gestures. Numerous methods 

utilizing these modalities for automatic emotion recognition 

have been proposed (see for example [1]-[3]). In addition, 

physiological signals, such as heart rate variability (HRV), 

galvanic skin response (GSR), and electroencephalogram 

(EEG) are considered to contain essential information about 

WKH� SHUVRQ¶V� HPRWional state [4]-[6]. Consequently, 

technologies combining different modalities for automatic 
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emotion recognition have recently gained considerable 

scientific interest. These include, for example, multimodal 

approaches using facial expressions with audio signals, 

different kinds of physiological signals, and facial 

expressions with physiological signals [7]-[9]. 

 The electrical activity of the brain is affected by emotions. 

The frontal asymmetrical brain activity was shown to 

discriminate between positive and negative emotions more 

than 30 years ago [10] and after that an extensive amount of 

information about the neurobiological background of 

emotions have been published. In the EEG-based 

technological solutions, the emotions have conventionally 

been tracked by assessing the activity changes in the 

classical frequencies, i.e. delta (1-4 Hz), theta (5-8 Hz), 

alpha (9-12 Hz), beta (13-30), and gamma (>30 Hz) bands, 

as well as the activity differences between the hemispheres. 

The novel easy-to-attach and even wireless measurement 

systems have made EEG an interesting possibility for 

multimodal HCI. However, as the number of electrodes and 

derived parameters in these set-ups is usually high, 

extracting the relevant information from the huge amount of 

data is essential to impURYH�WKH�V\VWHP¶V�SHUIRUPDQFH� 

In this paper, the selection of subject-independent feature 

set for EEG-based emotion recognition is studied. We 

investigate the effect of different feature sets in classifying 

peUVRQ¶V� DURXVDO� DQG� YDOHQFH� ZKLOH� ZDWFKLQJ� YLGHRV� ZLWK�

emotional content. The classification performance is 

optimized by applying a sequential forward floating search 

algorithm for feature selection. The structure of the paper is 

as follows: Section II describes the experimental protocol 

and used data as well as the feature extraction and the 

application of the feature selection algorithm. The results are 

given in Section III. In Section IV, the paper is concluded 

with some discussion about the achieved results compared to 

literature and future work. 

II. MATERIALS AND METHODS 

A. Experimental Protocol and Data 

The research in this paper uses the MAHNOB Database 

collected by Professor Pantic and the iBUG group at 

Imperial College London, and in part collected in 

collaboration with Professor Pun and his team of University 

of Geneva, in the scope of MAHNOB project financially 

supported by the European Research Council under the 

(XURSHDQ� &RPPXQLW\¶V� �
th

 Framework Programme 

(FP7/2007-2013) / ERC Starting Grant agreement No. 

203143 [11]. 
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In the experimental protocol, 20 video clips were shown 

to 30 subjects (17 females, 13 males; 19-40 years old) with 

different cultural backgrounds. The video clips, whose 

duration was 34.9-117 s, were taken from commercially 

produced movies (14) or online resources (6). After seeing 

each clip, the subject picked a keyword for the emotion that 

EHVW�GHVFULEHG�WKH�YLGHR¶V�FRQWHQW��7KH�NH\ZRUGV�XVHG�ZHUH��

sadness, joy/happiness, disgust, neutral, amusement, anger, 

fear, surprise, and anxiety. Each keyword was then mapped 

into one of three classes according to arousal and valence as 

presented in [12]. For arousal the classes were calm 

(sadness, disgust, neutral), medium arousal (joy/happiness, 

amusement), and excited/activated (anger, fear, surprise, 

anxiety). For valence the classes were unpleasant (sadness, 

disgust, anger, fear, anxiety), neutral valence (neutral, 

surprise), and pleasant (joy/happiness, amusement). 

During the experiment, EEG was recorded using 32 active 

AgCl electrodes. The electrode locations, illustrated in Fig. 

1, followed the international 10/20 system. The recording 

was performed first with a sampling frequency of 1024 Hz 

and the signals were then downsampled to 256 Hz. Due to 

unfinished data collection and technical problems, only 547 

of the 600 data recordings (20 clips × 30 subjects) were 

obtained. In addition, six recordings were excluded from the 

analysis due to poor signal quality. 

 

B. EEG Feature Extraction 

The processing of EEG signals as well as the data analysis 

presented in this paper was carried out using the Matlab 

technical computing language (The MathWorks Inc., Natick, 

MA). 

The power spectral density (PSD) of each EEG recording 

was calculated XVLQJ�:HOFK¶V�PHWKRG��:LQGRZ� OHQJWK�ZDV�

set to 5 s and overlap to 4 s. The PSDs were determined only 

for the signals recorded while the subjects were looking at 

the video excluding the self-evaluation parts. Three different 

feature sets were then created. The first one (FS1) contained 

powers in the conventional frequency bands: delta (1-4 Hz), 

theta (5-8 Hz), alpha (9-12 Hz), beta (13-30 Hz), and gamma 

(31-49 Hz). The second feature set (FS2) contained the 

powers in all single frequencies of the band 1-32 Hz. In 

addition, the powers in all adjacent 2 Hz, 4 Hz, 8 Hz, and 16 

Hz wide frequency bands were included as well as the total 

power in the 1-32 Hz band. The third feature set (FS3) was 

constructed similarly than FS2, but the frequency band used 

was 1-48 Hz. The features were calculated for all 32 

channels recorded. In addition, the power differences were 

determined for the 14 electrode pairs located symmetrically 

over the left and right hemispheres. The total number of 

features in FS1, FS2, and FS3 were thus 230, 2898, and 

4324, respectively. To reduce the inter-individual variation, 

the features were normalized as follows. For each subject, 

the feature values were separately mapped to the range [0, 

1]. This was done by subtracting the minimum value of the 

feature from all the feature values and then dividing the 

values by the difference between the maximum and 

minimum feature values. 

C. Feature Selection and Classification 

To reduce the feature sets and improve the classification 

performance, a sequential forward floating search method 

was applied to the data [14]. The method is based on a 

sequential search of the best feature subset using dynamic 

inclusion and exclusion of features. The algorithm contains 

the following steps:  

1) Feature inclusion. Each feature that is not included in 

the feature set is tested and the one that leads to the best 

performance is included. 

2) Conditional feature exclusion. Each feature that is 

included in the feature set is tested and if there is a feature 

whose removal leads to better performance compared to the 

performance received with the reduced feature set earlier, 

the feature is excluded. If more than one feature fulfills this 

criterion, the one that results in the best performance is 

selected. 

In the beginning, none of the features is included in the 

feature set. Step 2 is performed after step 1 and is repeated 

until the criterion is not fulfilled. After this, the algorithm 

goes back to step 1. The algorithm stops when all or a 

predetermined number of features are included. It has been 

shown, that the algorithm provides an optimal or close to 

optimal solution while being computationally effective 

compared to the exhaustive approach of trying all the feature 

combinations. The classification rate was used as the 

measure of performance. The classification was performed 

with a k nearest neighbors (KNN) leave-one-subject-out 

approach. 

The original number of features in FS2 and FS3 was high 

and the application of the feature selection method would 

have demanded too much time. Therefore, a preselection of 

features was carried out for the whole dataset using one-way 

ANOVA test. The test was done for each feature in both sets 

with the class (arousal and valence) as the independent 

variable. Only the features for which the p value was lower 

than a predefined threshold (0.05, 0.1, 0.15, or 0.2) were 

included when the above described feature selection 

algorithm was applied to the data. 

 

Fig. 1. The electrode locations used in the EEG recording. Figure 

created using EEGLAB [13] 
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TABLE I 

 FEATURE SELECTION AND CLASSIFICATION RESULTS 

 Arousal Valence 

Feature 

set 

Preselection 

criterion 

Features, 

total 

 

used 

 

k 

Classification 

rate 

Features, 

total 

 

used 

 

k 

Classification 

rate 

FS1 - 230 56 5 59.7% 230 103 3 55.8% 

FS2 p < 0.05 322 39 3 61.4% 281 72 3 58.6% 

 p < 0.10 536 57 7 60.8% 496 92 13 60.1% 

 p < 0.15 713 90 11 62.9% 682 81 3 61.7% 

 p < 0.20 896 90 3 65.1% 866 181 3 63.0% 

FS3 p < 0.05 477 63 5 60.6% 397 82 11 58.8% 

 p < 0.10 787 98 11 62.5% 685 51 17 60.8% 

 p < 0.15 1054 77 15 62.5% 934 43 17 60.6% 

 

III. RESULTS 

The effect of preselection on the number of features is 

given in Table I. As the number of features in FS1 was 

rather low, no preselection was carried out for it. For FS3, 

the preselection criterion p < 0.2 resulted in too big feature 

set for the feature selection algorithm and was thus 

excluded. The effect of preselection on the relative 

contribution of different frequencies in feature set FS2 is 

illustrated in Fig. 2. For arousal, the low frequencies (< 6 

Hz) as well as higher alpha frequencies (11-12 Hz) were 

emphasized in the feature set after preselection. In addition, 

the contribution of higher frequencies (> 20 Hz) was rather 

high with arousal. For valence, the lower frequencies (< 12 

Hz) were slightly emphasized in the feature set and the 

contribution of higher frequencies was smaller than with 

arousal. 

Table I also presents the best classification results 

obtained with the three feature sets and different preselection 

criteria. The best classification rate for arousal was 65.1% 

and for valence 63.0%. They were both achieved with 

feature set FS2, preselection criterion p < 0.20, and k = 3. 

For FS3, the best results for arousal (62.5%, k = 15) and 

valence (60.6%, k = 17) were obtained with preselection 

criterion p < 0.15. The features of FS1 representing the 

conventional frequency bands resulted in substantially lower 

classification rate (59.7% for arousal and 55.8% for 

valence).  

In Fig. 3, the results of the feature selection algorithm are 

presented for feature set FS2 as a function of number of 

features. As shown already in Table I, the best classification 

rate for arousal was obtained with 90 features. For valence, 

181 features resulted in the best classification rate. 

IV. DISCUSSION 

The proposed approach for EEG-based video-induced 

emotion classification substantially improves the results 

presented in the literature. When publishing the database 

used also in this study, Soleymani et al. reported a 

classification rate of 52.5% for arousal and 57.0% for 

 

Fig. 2. The effect of preselection on the contribution of different 

frequencies in the feature set FS2 before the application of feature 

selection algorithm. White, black, red, green, and blue bars indicate the 

relative contribution of each frequency before preselection and after 

preselection using p < 0.2, p < 0.15, p < 0.1, and p < 0.05, respectively. 

The histograms are created so that each feature equally contributes to 

the area. The feature representing a single frequency increases the 

corresponding bin. The feature containing more than one frequency, for 

example a 2 Hz wide band, increases all the corresponding bins within 

the band. However, the bins are increased only half compared to the 

previous case. 
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valence when only EEG was used [11]. The results are 

comparable with this study as the approach for classification 

(leave-one-subject-out classification with keyword-based 

determination of arousal and valence for the video samples) 

was similar. 

In future, further analysis of the EEG changes related to 

video-induced emotions is needed. This study illustrated the 

significance of the feature selection in the EEG-based 

classification of arousal and valence. However, reliable 

measurement of these parameters should be based on the 

neurophysiological phenomena related to the emotions 

induced. Finding out the phenomena requires a 

comprehensive topographical analysis of the EEG spectral 

changes. 

V. CONCLUSIONS 

In this paper, the selection of subject-independent feature 

set for EEG-based emotion recognition was studied. The 

HIIHFW�RI�GLIIHUHQW�IHDWXUH�VHWV�LQ�FODVVLI\LQJ�SHUVRQ¶V�DURXVDO�

and valence while watching videos with emotional content 

was investigated. The classification performance was 

optimized by applying a sequential forward floating search 

algorithm for feature selection. The best classification rate 

(65.1% for arousal and 63.0% for valence) was obtained 

with a feature set containing power spectral features from 

the frequency band of 1-32 Hz. The proposed approach was 

shown to substantially improve the classification rate 

presented in the literature. In future, a topographical analysis 

of the essential spectral features for video-induced emotion 

classification is needed. 
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Fig. 3. The results of the feature selection algorithm when feature set 

FS2 was used with a preselection criterion p < 0.2. The classification 

rate is given as a function of number of features for five different k 

values. 

4290


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

