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Abstract— This paper presents a novel and computation-
ally simple tri-training based semi-supervised steady-state vi-
sual evoked potential (SSVEP)-based brain-computer inter-
face (BCI). It is implemented with autocorrelation-based fea-
tures and a Naïve-Bayes classifier (NBC). The system uses
nine characters presented on a 100 Hz CRT-monitor, three
scalp electrodes for signal acquisition, a gUSB-amp for pre-
amplification and two PCs for data-processing and stimulus
control respectively. Preliminary test results of the system on
nine healthy subjects, with and without tri-training, indicates
that the accuracy improves as a result of tri-training.

Index Terms— Brain-Computer Interface, Steady-State Vi-
sual Evoked Potentials, Tri-training, Autocorrelation, Naïve-
Bayes Classifier

I. INTRODUCTION
Brain computer interface (BCI) is an alternative/direct

communication pathway between the brain and an external
device, without having to go through the usual neuromuscu-
lar pathways [1]. Imagine being alert and aware of your envi-
ronment, but unable to move, speak or express yourself due
to e.g. amyotrophic lateral sclerosis (ALS), brain- or spinal
cord injury, cerebral palsy, muscular dystrophies, multiple
sclerosis, and numerous other degenerative diseases. This
condition is called locked-in syndrome - the affected may
lose all voluntary muscle controls, including eye movements
and respiration. BCI research has opened up an exhilarating
option for such disabled people to communicate with the
outside world through their brain signals rather than the
usual means. An often used method of extracting data is
via electroencephalography (EEG), as it is cheap, simple,
non-invasive, and with little or no risk and discomfort to the
user.

Steady-state visual evoked potentials (SSVEP)-based BCIs
function on the premise, that a visual stimuli (e.g. a flash of
light) evokes a measurable response in the brain, primarily
in the visual cortex [2]. This can be used to determine which
of a series of flickering targets is being visually processed
by the user. If each target is flickering at a unique frequency,
this frequency will be replicated in the EEG when the
user is gazing at it. By assigning different values (numbers,
letters, command, etc.) to the targets, the user can transfer
information to the system by shifting the gaze from target to
target.
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General challenges with BCI-systems are the lack of
speed, robustness, and accuracy. A popular method to counter
these is by combining the systems with classifiers [3],
many times requiring slow and cumbersome training for
each user; often even between or during sessions. Recently
semi-supervised (or self-training) techniques have received
a lot of attention from the machine learning community.
They make use of both labelled- and unlabelled data for
classifier design, and tries to adjust the classifier parameters
to track variations in the data. Provided model assumptions
are valid, they are proven to improve the performance in
many classification problems, including BCI [4][5]. Methods
such as co-training/self-training use agreement of multiple
classifiers/confident predictions of the classifier in addition
to the labelled data to adapt the classifier [4]. In our paper,
a new approach at SSVEP-based BCI-systems, where a
classifier is combined with a self-training algorithm known
as tri-training is proposed and tested successfully.

II. METHODS

A. Experimental Setup

The overall system is illustrated in Fig. 1. A 3x3 pattern
of targets is presented on a 100 Hz CRT monitor. Each
has a checker-board-pattern and shifts between two states
(checker-board and inverted checker-board) with a unique
frequency between 4 and 17 Hz. The system uses 3 scalp
electrodes (Fpz, Fz and Oz) connected to the subject with
impedances < 5kΩ. The sampling rate of the bioamplifier
was set to 256 Hz. A computer processes the data from the
subject, and send the results to another computer generating

Fig. 1. Schematic representation of the proposed system
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the visual output of the system. The subjects were seated
within a distance of 30-40 cm of the stimulus screen.

B. Feature Extraction

The feature extraction method is presented in this subsec-
tion. An autocorrelation-based feature is chosen because of
its simplicity. From theory, the normalized autocorrelation
for sampled signal, x(n), of infinite length, is defined as:

rxx(l) =
1

∑
∞
n=−∞ x(n)2

∞

∑
n=−∞

x(n)x(n+ l), l ∈ Z. (1)

It can be seen that rxx(l) is symmetric around l = 0, and
rxx(0) = 1 for all real signals, which the recorded signals are
assumed to be. Furthermore, in our case, all signals used are
of finite length of M = 256 samples, and non-overlapping.
As the feature-vector (from here on denoted by χ) should
only consist of unique values, the following simplification is
suggested:

χx(l) =
1

∑
M
n=1 x(n)2

M−l

∑
n=1

x(n)x(n+ l), l = 1,2, ...,M−1. (2)

The relationship between the true SSVEP-signal (x(n)) and
the recorded signal (y(n)) can be modelled as, y(n) =
x(n)+w(n) where w(n) is the random measurement noise,
which is assumed to be white. In this case, the following
approximation can be made to the features of y(n):

χy(l)≈ χx(l)
10SNR/10

10SNR/10 +1
, l 6= 0, (3)

where SNR is the signal-to-noise-ratio of y(n). It can be seen
that if no clean feature is present, i.e., χx(l) = 0, then χy(l)
should also be zero.

C. Classification

In this work, we have chosen the Naïve-Bayes classifier
(NBC) because of its simplicity and robustness [6]. Further-
more, this classifier had already showed promising results in
collaboration with the tri-training algorithm [7]. The NBC
assumes normal distribution of the individual features within
each class and independence between the features.

Given a labelled feature set, L j of length N representing
the training data for class C j, it can be represented in a matrix
form as in Eq. (4):

L j = [X1, j
y ,X2, j

y , . . . ,XN, j
y ] =

χ
1, j
y (1) χ

2, j
y (1) . . . χ

N, j
y (1)

χ
1, j
y (2)

. . . . . . χ
N, j
y (2)

...
. . . . . .

...
χ

1, j
y (M−1) χ

2, j
y (M−1) . . . χ

N, j
y (M−1)

 , (4)

where Xn, j
y is a column vector representing the nth feature

set of class C j. This way the mean of each feature in the
class C j can be estimated by:

µl j =
1
N

N

∑
n=1

χ
n, j
y (l), (5)

where µl j is the mean of the l-th feature in the j-th class.
The variances is given by:

σ
2
l j =

1
N−1

N

∑
n=1

(χn, j
y (l)−µl j)

2, (6)

thereby the probability of a given feature being in a specific
class can be estimated by the normal probability density:

p(C j|χy(l)) =
1√

2πσl j
e−(χy(l)−µl j)

2/2σ2
l j . (7)

Finally the probability of a given set of features being from
a specific class, C j can be estimated by:

p(C j|Xy) = P(C j)
M−1

∏
l=1

p(C j|χy(l)), (8)

where P(C j) is the previous occurrence of the class C j. The
probability can be normalized with the sum of probabilities
for all classes, but since it is only a matter of determining
the most probable class this is not necessary.

D. Thresholding

To determine when the user intends to select a target,
a threshold must be implemented. This should also help
to ensure that the self-training algorithm is not corrupted
by large amounts of noise. Since the feature vector is
normalized with respect to the signal power, the values only
depends on the quality of the signal, assuming a relatively
constant SNR. Therefore the value,

ξ =
M−1

∑
l=2
|χy(l)| (9)

can be interpreted as a measure of the signal quality. Differ-
ent frequencies are expected to deliver varying signal quality
[8], so the threshold requires either an individual value for
each class. As this threshold is obviously directly related to
the variance of the autocorrelation, certain factors must be
taken into consideration:
• The shorter the signal, the greater the variance of the

autocorrelation even if there is no signal. This allows
shorter span in which to choose the threshold value.

• The autocorrelation is normalized to signal power. A
signal with a sufficiently low SNR might deliver a
"clean" signal after the autocorrelation, but it will be
scaled down and not able to pass the threshold value,
see Eq. (3). This means that signals that can potentially
be classified are discarded.

E. Tri-training

Tri-training [7] is a new method for self-training of clas-
sifiers from unlabelled data when only little labelled data
are available. Labelled data in this context are the signals
recorded when the subject is gazing at a known target. To
train the classifier accurately, labelled data for all targets are
needed. The more data that can be collected, the better the
classifier can be trained (as a rule-of-thumb). Unlabelled data
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TABLE I
PSEUDOCODE REPRESENTING THE TRI-TRAINING ALGORITHM

function hx = tri_train(L,U)
// hxis the best classifier,
// L is the labeled dataset, U is the unlabeled dataset

for i in {1,2,3}
// random sample representing 75% of the labeled data:
Si = bootstrap(L,0.5× size_o f (L))
hi = train_classi f ier_on(Si) // train the classifier on the sample
e′i = 0.5 //starting error rate
l′i = 0 //size of last training set for the classifier

while h1 6= h_prev1 or h2 6= h_prev2 or h3 6= h_prev3
// as long as at least one of the classifiers has been updated:

for i in {1,2,3}
Li = /0
U pdateClassi f ieri = false
ei = measure_error_rate([h j,hk],L), [ j,k] 6= i

if ei < e′i
// if the new error rate is lower than the previous:
for x in U

if h j(x) == hk(x), [ j,k] 6= i
// if the other classifiers agree on x:

Li = [x,Li] // update the training set with x

if l′i == 0
// if this classifier hasn’t been trained before:

l′i =
ei

e′i−ei
+1

if l′i < size_o f (Li)

if ei× size_o f (Li)< e′il
′
i // if eq. 10 is satisfied

U pdateClassi f ieri = true
elseif l′i >

ei
e′i−ei

//if it is possible to satisfy eq. 10
Li = bootstrap(Li,(

e′il
′
i

ei
−1))

U pateClassi f ier = true

for i in {1,2,3}
h_previ = hi

if U pdateClassi f ieri == true
hi = train_classi f ier([L,Li])
e′i = ei
l′i = size_o f (Li)

// estimate the best classifier
x = min(measure_error_rate([h1,h2,h3],L))
// return the best classifier
out put(hx)

are data that, with a fair certainty, are recorded with the
subject gazing at one of the targets, but without knowing
which, and are generated as the system is used. Tri-training
attempts to label the unlabelled data democratically and use
it for training. It has proven to be very effective [7] compared
to other self-training algorithms, and enables the system to
gradually improve while being used, and/or adapt to the
current user. The system is best described by the pseudo-
code shown in Table I.

L is the superset of all labelled data from all classes, so
that L j ( L. The set U is a set containing all unlabelled data
(U ∩L = /0) and Li ⊂U is a set containing only self-labelled
data. The function size_o f (Li) outputs the number of
labelled feature sets in the set Li, bootstrap(Li,n) outputs n
random samples from Li and measure_error_rate([h j,hk],L)

estimates the combined error rate of the jth and kth
classifier, h j and hk, from the labelled dataset L, see Eq.
(11). The key criterion in the tri-training algorithm is that
the absolute number of falsely labelled feature sets from the
unlabelled set must decrease for each training round [7].
This criterion can be summarized in the following equation:

0≤ ei

e′i
<

l′i
size_o f (Li)

< 1, (10)

where e′i, and l′i are the error rate and training set size from
the previous round respectively, and ei, and Li are the current
error-rate and current training set. Eq. (10) also contains the
criterion that the relative error rate must decrease, and that
the number of labelled feature sets must increase. Because
the error-rate cannot be determined, it is estimated from the
labelled data. In this work, the error rate was estimated by:

ei = 1− |hi(L)correct |
|L|

, (11)

where hi(L)correct is the correct classifications by hi of the
labelled set L.

III. RESULTS

The experiment was conducted on nine healthy subjects
aged between 18 and 25; 4 females and 5 males. All except
one were without prior experience with BCI-systems. The
recorded data were bandpass-filtered from 5-60 Hz with
a 6th order Butterworth filter. The system was trained 10
seconds on each target. After this, the system was tested by
sampling 40 random targets. Each target was then highlighted
until a correct hit was registered, and the next target from
the set would be highlighted. All signals from the training
session that surpassed the threshold value (both correct and
incorrect hits) were saved as unlabelled training data. The
classifiers were then tri-trained and, after a 30 s pause, the
test procedure was repeated to measure the improvement.
The accuracy (P = |correct hits|

|correct hits|+|false hits| ) of the system and the
information-transfer-rate (ITR) of the system were estimated
for performance evaluation. The ITR was calculated using
the following formula:

IT R =
60
t̄

(
log2K +P · log2P+(1−P) · log2

1−P
1−K

)
, (12)

were K is the number of targets (9) and t̄ is the average
time the subject needed to correctly select a character. It

TABLE II
ITR RESULTS (BT: BEFORE TRI-TRAINING, AT: AFTER TRI-TRAINING)

Subject # BT (bits/min) AT (bits/min)
1 20.2±10.8 38.9±12.1
2 3.1±3.7 3.4±0.8
3 2.8±2.6 4.6±5.0
4 16.4±0.1 16.8±3.6
5 94.2±3.9 106.9±11.9
6 73.7±1.4 78.3±11.8
7 10.4±5.8 9.8±3.6
8 66.1±8.5 45.5±0.8
9 55.5±6.0 43.9±22.4

4281



TABLE III
ACCURACY RESULTS

Subject # BT (%) AT (%)
1 58.1±3.6 68.4±0.8
2 29.2±10.6 32.9±3.1
3 39.2±21.0 43.9±26.3
4 55.9±0.6 54.9±6.9
5 94.1±1.6 97.6±3.4
6 86.3±6.6 81.2±13.8
7 50.0±6.4 51.8±9.9
8 94.2±4.7 86.1±3.9
9 83.4±3.3 73.2±0.0

TABLE IV
T-TEST RESULTS

Test Null Hypothesis p-value Status
ITR before ≥ after 0.479 not rejected
Accuracy before ≥ after 0.683 not rejected
Selection Time before ≤ after 0.203 not rejected

can be seen, in Table II, that the system is in many ways
comparable to existing SSVEP systems in terms of ITR, and
that 6 of the 9 subjects improves as a result of tri-training.
5 of the 9 subjects improves in terms of accuracy, as can
be seen in Table III. The ITR vs. accuracy is however a
weighting, and as the current system is build-up, it could be
weighted differently. It could be argued that the subjects tend
to fall in two groups performing either far above or far below
average, agreeing to the findings of other researchers [9]. The
t-test (Table IV) does not exploit any statistically significant
changes before and after the tri-training. It should be noted,
however, that subjects 7,8, and 9 were tested before a pause
between the two testing phases was implemented, with their
results indicating that fatigue has a negative influence on the
performance. There can be several other factors responsible
for the lack of improvement, e.g.:
• The unlabelled training set is relatively small (≈45

epochs) compared to the epochs available under normal
operating conditions. It is possible that the small amount
of data gives broadly distributed results, whereof some
can be worse than the initial accuracy.

• As the classifier assumes normal distribution, and as no
signals below the threshold value are used in the train-
ing, it could be theorized that the chosen thresholding
method distorts the classifier.

• The chosen feature has an almost binary quality; good
or bad - this could lead to the classifiers saturating very
fast.

Before the experiments were performed, Monte-Carlo simu-
lations were carried out on artificial data. These mirrored
most of the results shown - including that the classifiers
seemed to saturate very fast, which could suggest that tri-
training is not too effective with the used feature and/or data.

IV. CONCLUSION

The system presents a new approach to the SSVEP-based
BCI that is computationally simple, requires little setup time
and hardware, and delivers results in-line with existing sys-
tems [10]. In real-life applications, the tri-training algorithm

could have access to a much greater amount of both labelled
and unlabelled data. It is probable that the labelled data could
be re-used from session to session, allowing the tri-training to
compensate for minor differences as background noise, etc.
Initial results indicate that tri-training could improve perfor-
mance in some cases, but further optimization is most likely
possible. The classifier output could in many aspects serve
as an improved threshold value, and a classifier accounting
for covariance between features could also likely improve
performance.
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