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Abstract— Sleep analysis is an important diagnostic tool for
sleep disorders. However, the current manual sleep scoring
is time-consuming as it is a crude discretization in time and
stages. This study changes Esbroeck and Westover’s [1] latent
sleep staging model into a global model. The proposed data-
driven method trained a topic mixture model on 10 control
subjects and was applied on 10 other control subjects, 10
iRBD patients and 10 Parkinson’s patients. In that way 30
topic mixture diagrams were obtained from which features
reflecting distinct sleep architectures between control subjects
and patients were extracted. Two features calculated on basis
of two latent sleep states classified subjects as ”control” or
”patient” by a simple clustering algorithm. The mean sleep
staging accuracy compared to classical AASM scoring was
72.4 % for control subjects and a clustering of the derived
features resulted in a sensitivity of 95 % and a specificity of
80 %. This study demonstrates that frequency analysis of sleep
EEG can be used for data-driven global sleep classification and
that topic features separates iRBD and Parkinson’s patients
from control subjects.

I. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder,
where a progressive loss of structure or function of neurons
lead to severe morbidity and even death. There exist no cure
for PD and the treatment is symptomatic. If a neuprotective
agent becomes available it is essential to identify the patients
as early as posible, ideally in the presymptomatic interval
before the clinical onset. Research has shown that idiopathic
rapid-eye-movement sleep behavior disorder (iRBD) is a
potential preclinical marker for neurodegenerative diseases
including PD [2]. Polysomnography (PSG) is an important
diagnostic tool when diagnosing sleep disorders [3] and
many studies treat sleep electroencephalography (EEG), elec-
tromyography (EMG) and electrooculography (EOG) in the
search for biomarkers [4].
The American Academy of Sleep Medicine (AASM) has
defined the present standard for manually sleep scoring using
PSG [5]. The AASM sleep stages are divided into rapid eye
movement (REM) and non-REM, which is further divided
into three stages N1-N3 according to the level of drowsiness.
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Despite the common use of AASM, manually scoring is crit-
icized for several weaknesses such as oversimplification of
the sleep structures by discretizing sleep stages into defined
stages. Another weakness is that the inter-rater reliability is
low (reliabilities for healthy subjects lie between 67-91 %
[3]). Focusing solely on brain activity during sleep requires
a robust and general method for analysing EEG. Many
proposed automatic sleep classifiers uses EEG frequency
measures to obtain performances with reliabilities between
70-90 % (methods are summarized in [3]).
In [1] an automatic and unsupervised sleep staging model
is presented using EEG spectral features from the standard
frequency bands (delta: <4 Hz, theta: 4-7 Hz, alpha: 8-13
Hz and beta: 14-30 Hz). The model uses the Latent Dirichlet
Allocation (LDA) method for sleep staging and each epoch
is described as a mixture of topics, where each topic is
evaluated as a latent sleep structure. All topics are defined
in a data-driven way and are therefore not biased by former
knowledge of sleep staging. The model presented in [1] had
a mean performance of 70.1 % compared to manually scored
Rechtschaffen and Kales hypnograms.
In [1] a new model for each subject was conducted, gaining
high flexibility but compromising direct comparison of topics
between subjects. This study uses control subjects to train
an automatic and unsupervised LDA model and applies the
trained general model to new subjects.
The hypothesis is that this global sleep staging model will
make the sleep staging general and objective in contrast
to manual sleep staging based on the AASM standard. It
has been hypothesized that iRBD and PD patients express
a changed sleep architecture compared to control subjects
[6][7]. We hypothesize that the brain activity of control
subjects will exhibit similar frequency characteristics, that
they differ from the characteristics of patients and that this
diversity will be captured by the general topic model.
In [8] a similar approach is carried out to classify iRBD
and PD patients by using EOG features reflecting eye move-
ments.

II. DATA

A. Subjects

Sleep EEG from 20 control subjects, 10 iRBD patients and
10 PD patients was enrolled in this study. The control sub-
jects have no history of movement disorder, dream enacting
behavior or sleep disorders. Recordings and sleep evaluations
were done by the Danish Center for Sleep Medicine at
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TABLE I
DEMOGRAPHICS

Subject group No subjects (male, female) Age [years] (µ±σ )
Control (train) 10 (5, 5) 57.2 ± 8.1
Control (test) 10 (5, 5) 59.8 ± 8.4
iRBD (test) 10 (8, 2) 59.0 ± 14.2
PD (test) 10 (6, 4) 63.2 ± 6.3

Glostrup University Hospital in Denmark. The demographics
of the subjects are summarized in Table I.

B. Polysomnographic recordings (PSG)

For all subjects a full night PSG was recorded and
evaluated in accordance with the AASM standard [5]. Proper
measurement quality was ensured by visual inspection and
recordings with presence of artefacts such as electrode dis-
connections were rejected. All analysis was carried out on
the left central, frontal and occipitale EEG channel (C3-A2,
F3-A2 and O1-A2) using a sampling frequency of 256 Hz.
Three EEG channels were used instead of one as in [1] in
order to detect a wider range of brain activities.

III. METHOD

A. Sleep staging model

Initially all data was bandpass filtered forward and re-
versed by a 4th order Butterworth filter with cut-off fre-
quencies at 0.3 and 35 Hz (3 dB). After filtering, each EEG
channel was split into non-overlapping one-second segments
and the single sided amplitudes were derived by use of the
fast fourier transform. The amplitudes were split into the
clinical EEG frequency bands (delta: <4 Hz, theta: 4-7 Hz,
alpha: 8-13 Hz and beta: 14-30 Hz) and summed within each
band. Fig. 1 shows the method schematically.
The SAX approach [9] to time-series symbolization was used
separately on each EEG channel on a per-subject basis to nor-
malize the features and allow comparisons between subjects.
The discretization was nessecary for creating ”words” used
in the topic model. In each frequency band SAX divided
the full range of amplitude features into five equiprobable
bins and every one-second segment was assigned a discrete
number between 1 and 5 according to which quantile the
amplitude feature belonged to. The sleep recording for each
channel was thereby transformed into four strings (one for
each frequency band) consisting of symbols 1-5 with each
symbol describing the amplitude level in the corresponding
one-second segment.
The symbol strings were divided into 30 seconds non-
overlapping epochs to allow comparison with the AASM
standard and a sliding window counted ”words” defined
as three contiguous symbols in each 30 second epoch. In
summary each 30 second epoch was described by counts
of all 1500 possible words when using five symbols, words
containing three contiguous symbols in four frequency bands
from three EEG channels.
LDA is a generative model normally applied to text doc-
uments to detect an underlying set of topic probabilities

by counting words [10]. Input is a matrix containing word
counts for each document and the output is mixtures of prob-
abilities that the specific document contains the individual
K topics. In this application each 30 second epoch should
be consideres as a ”document” and each subject’s full night
sleep recording (from lights off to lights on) as a ”corpus”.
Like [1], this study used variational inference to optimize the
model parameters and five topics to allow comparison with
the AASM standard.
The topic model was trained on 10 control subjects due
to a hypothesis that control subjects express the true sleep
characteristics according to brain activity in the different
sleep stages. The 10 control subjects corpora were merged
into one large corpus and used for training a general topic
mixture model, see Fig. 2. The parameters of the topic
dirichlet and word dirichlet were saved and these parameters
defined the general sleep staging model. Generalization of
the model ensures equal ”scoring procedure” between sub-
jects and thereby direct comparison between topic mixture
diagrams. The trained model was applied to each individual
test subject and the posterior probabilities for each topic in
each epoch were approximated by variational inference.
Support vector machines (SVM) were used for comparing
the topic model with the manual scoring. SVM was extended
into a multiclass classifier by training and testing using an
one-versus-all approach. This was done on a per-patient
basis where the epochs were randomized and distributed
equally into 20 dataset ensuring all sleep stages were present
in all dataset. Validation was carried out by using all 20
training/test set combinations; training on one set and testing
on the other 19. For each subject the mean of the accuracy
of the 20 multiclass SVM models was set as the model
performance for the specific subject.

B. Features and classification

Specific features were defined in accordance with the hy-
pothesis that the sleep architecture between control subjects
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Fig. 1. Flow chart of data preparation and model application.

δ … … … …

θ … … … …

α … … … …

β … … … …

… … … … …

… … … … …

C3-A2

F3-A2

O1-A2

Epochs

W
o

rd
s

Control train 1 Control train 2 … Control train 10

… … … …

… … … …

… … … …

… … … …

… … … …

… … … …

… … … …

… … … …

… … … …

… … … …

… … … ...

… … … …

…

…

…

…

…

…

Fig. 2. Word counts for all training control subjects were merged into
a single matrix used for training the topic mixture model. The parameters
describing the topic and word dirichlet were applied when topic mixtures
for test subjects were derived.
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and iRBD/PD patients differs. The certainty, C, of different
topics were used as features and extracted from the topic
mixture diagrams from all test subjects (10 control subjects,
10 iRBD patients, 10 PD patients) as

C(m) =

N
∑

n=1
logical{pn(m)> Qm}

N
∑

n=1
pn(m)

(1)

where n = 1,2, ...,N defines the epoch number, m = 1,2, ...,5
specifies the topic with corresponding pn(m) topic proba-
bility and Qm defines the threshold for when an epoch is
counted as certain for that specific topic.
Receiver operating characteristic (ROC) analysis evaluated
by area under curve (AUC) values using the leave-one-
subject-out approach was performed individually on each
topic feature. This was done to derive the certainty threshold
that best separated the controls and patients. To examine
a potential cluster separation between control subjects and
iRBD/PD patients a simple K-means algorithm with K = 2
was applied on the certainty feature from two topics (topic 2
and 4) using the leave-one-subject-out validation approach.
The third feature extracted was the number of transitions T
normalized with the subject-specific total number of epochs.
A transition was defined as a change in dominating topic
between subsequent epochs (all topics included) expressed
as

T =
N−1

∑
n=1

logical
{

argmax
m

pn(m) 6= argmax
m

pn+1(m)
}

(2)

This extra feature was included in the K-means algorithm
creating a 3D distance separation.

IV. RESULTS AND DISCUSSION
A. Topic mixtures for sleep staging

This study shows a clear visual similarity between the
obtained topics and the manually scored hypnograms. Fig. 3
shows the trained model applied to a control test subject, a
moving average smoothed version using ten epochs and the
corresponding hypnogram. Each epoch is represented as a
coloured vertical bin where the amount of each colour is the
individual topic probabilities pn(m).
There is a distinct concordance between topic 2 (light blue)
and REM as well as topic 4 (orange) and deep sleep. Less
pronounced but valid for the full sleep recording is the corre-
lation between topic 1 (dark blue) and N1, topic 3 (green) and
N2, topic 5 (red) and awake. Table II summarizes the visual
concordances and the same concordance was present in all
test subjects independent of test group. The temporal course
of the topics are smooth and physiological this indicates
continuous shifts between sleep stages in contrast to the
abrupt shifts in manual scoring.
Fig. 4 shows the model applied to an iRBD patient. The
iRBD patient expresses less topic 2 and 4 compared to the
control subject. The AASM stage N3 is highly influenced
by topic 3 indicating that the majority of deeper sleep might
be dominated by N2 and rarely by N3. The REM periods

Fig. 3. Control test subject. Top: the trained model applied to a control test
subject. Middle: moving average of the top plot using ten epochs. Bottom:
corresponding manually scored hypnogram.

Fig. 4. iRBD test patient. Top: the trained model applied to an iRBD test
patient. Middle: moving average of the top plot using ten epochs. Bottom:
corresponding manually scored hypnogram. Compared to control subjects
iRBD patients show less certainty of topic 2 and 4.

Fig. 5. PD test patient. Top: the trained model applied to a PD test
patient. Middle: moving average of the top plot using ten epochs. Bottom:
corresponding manually scored hypnogram. Compared to control subjects
PD patients show shorter sleep stages, more abrupt transitions and less
systematic sleep achitecture.
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TABLE II
CONCORDANCE BETWEEN AASM SLEEP STAGE AND TOPIC

Topic 1 2 3 4 5
Colour dark blue light blue green orange red
AASM N1 REM N2 N3 Awake

are shared between topic 1 and 2 and not only topic 2.
No iRBD subjects’ sleep contain topics with large certainty
which can be caused by the fact that the model was trained
on control subjects and therefore fits the control sleep EEG
better. Alternatively, the difference is due to a physiological
phenomenon indicating that iRBD patients lack the ability to
lock in a single sleep topic or the sleep stages simply have
different brain activity characteristics.
For PD patients the certainty of topic 2 and 4 is large in
some short periods whereas other periods show low certainty
as was the case for iRBD, seen in Fig. 5. In general, PD
patients show shorter sleep stages, more abrupt transitions
and less systematic sleep achitecture. This corresponds well
with insomnia which is common for PD patients [7].
The accuracies of the sleep scoring compared to the manually
scored hypnograms are derived by multiclass SVM on a per-
patient basis. This is the best way of validating the automatic
method but it is important to remember that the manual
scored sleep stages are not necessarily the truth and the
low inter-rater reliability in manual scoring will affect the
accuracy of the SVM. This study’s model shows accuracies
of (µ±σ ) 72.4±4.7 for control subjects, 65.2±7.0 for iRBD
patients and 58.6±11.3 for PD patients. This is considered
good performance for automatic sleep stager models [3].
The standard deviation of the performance between control
subjects is low which supports that the model is general.
Accuracies for iRBD and PD patients have lower means
and larger standard deviations. This is most likely caused by
greater uncertainty of manually scoring in diseased patients
and/or lack of fit of this study’s model on these groups.

B. Feature extraction and classification

Control subjects showed more percentage of higher cer-
tainty of topic 2 and 4. Mean AUC values were used to set
the thresholds of 0.67 for topic 2 and 0.60 for topic 4. This
means, that a certainty of topic 2 larger that 67 % occurs
relatively frequently in all control subjects whereas it is rare
for iRBD and PD patients. The same is valid for topic 4 with
a certainty threshold at 60 %.
K-means using only these two features showed class sep-
aration, see Fig. 6 where all data is used to illustrate the
clustering. The cluster analysis classified patients with a
sensitivity of 95 % and a specificity of 80 % using the leave-
one-subject-out validation scheme. Extending the K-means
algorithm with the third feature (number of transitions) did
not increase the class separation.

V. CONCLUSION
The topic mixture model derived in this study is a general

model for sleep staging performing within the normal range

Fig. 6. For visual illustration a K-means algorithm is applied on the
certainty features using all data and the decision boundary is drawn by
using the position of the centroid centers. Leave-one-out validation showed
significant clustering of iRBD and PD patients in one group separated
from the group of control subjects. Circle: control subjects, diamond: iRBD
patients, square: PD patients. Blue dot: class 1, red dot: class 2, cross:
centroid center.

of automatic sleep classifiers. The data-driven approach and
mixture representation induced a more detailed discription of
sleep compared to classical manual scoring. Using the gen-
eral topic model, 30 topic mixture diagrams were obtained
from test subjects. Feature extraction reflecting certainty of
two sleep topics uncovered two clusters: control subjects and
iRBD/PD patients and a simple K-means with K = 2 classi-
fied the subjects with a sensitivity of 95 % and a specificity
of 80 %. This shows that the topic mixture modelling is able
to automatically identify differences in sleep characteristics.
However, the separation method is somewhat supervised and
generalization of the result needs to be validated using an
increased number of subjects.
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