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Abstract— Human motion recognition is essential for many 

biomedical applications, but few studies compare the abilities of 

multiple sensing modalities. This paper thus evaluates the 

effectiveness of different modalities when predicting targets of 

human reaching movements. Electroencephalography, 

electrooculography, camera-based eye tracking, 

electromyography, hand tracking and the user’s preferences are 

used to make predictions at different points in time. Prediction 

accuracies are calculated based on data from 10 subjects in 

within-subject crossvalidation. Results show that 

electroencephalography can make predictions before limb 

motion onset, but its accuracy decreases as the number of 

potential targets increases. Electromyography and hand 

tracking give high accuracy, but only after motion onset. Eye 

tracking is robust and gives high accuracy at limb motion onset. 

Combining multiple modalities can increase accuracy, though 

not always. While many studies have evaluated individual 

sensing modalities, this study provides quantitative data on 

many modalities at different points of time in a single setting. 

The information could help biomedical engineers choose the 

most appropriate equipment for a particular application. 

Keywords—intention detection, reaching movements, eye 

tracking, electroencephalography, electromyography 

I. INTRODUCTION 

Recognition of voluntary movements is crucial in many 
fields of biomedical engineering, and many different 
technologies have been used for this purpose. For example, 
neuroprostheses can be controlled with brain-machine 
interfaces [1] while exoskeletons use electromyography to 
augment movement [2]. In each application, it is necessary to 
carefully select the most appropriate sensing technology. 
Selection criteria include the cost of the equipment, the user-
friendliness, the accuracy and the time at which the 
movement can be recognized (before/after movement onset). 

One important type of voluntary movements is reaching 
movement toward one of several objects. Faced with many 
possible targets, the goal is to predict the actual target 
quickly and accurately. This information can then be used by 
e.g. assistive devices that support the movement. Many 
modalities can be used for prediction. When choosing among 
objects, a person’s gaze shifts toward the eventually chosen 
item [3–4], which can be measured using eye trackers. Brain 
activity associated with motion planning can be measured 
with electroencephalography [5–7]. Electrical muscle 

 
* This work was supported by the Swiss National Science Foundation 

through the National Centre of Competence in Research Robotics. 

All authors are with ETH Zurich, Switzerland (phone: +41 7744-70158; 

e-mail: firstname.lastname@hest.ethz.ch).  

activity precedes limb motion onset [2, 8], and movement 
direction indicates the target before it is reached. 

All these possibilities have been extensively studied, and 
attempts have been made to combine multiple modalities. 
For example, Corbett et al. [9] used eye tracking to predict 
the reaching target and then planned the movement trajectory 
using electromyography. However, no studies directly 
compare numerous sensing modalities in a single setting with 
regard to two important criteria: how accurate they are and 
how early they can predict the target of the movement. 

Our study attempts to address this issue by predicting 
targets of reaching movements using electroencephalography 
(EEG), electrooculography (EOG), camera-based eye 
tracking, electromyography (EMG), hand tracking and the 
user’s preferences. Each modality is evaluated at multiple 
points in time individually and in combination with others.  

II. MATERIALS AND METHODS 

A. Subjects 

Ten healthy right-handed subjects (9 males, 1 female, 
27.0 ± 2.4 years old) participated in the study. 

B. Task environment 

The task consisted of multiple reaching trials performed 
in a horizontal plane using virtual objects. The subject sat at 
a desk with the right hand on the desktop (Fig. 1). A screen 
on the desk displayed a virtual environment (Fig. 2) that 
initially consists of 3 platters and a red square that marks the 
starting position for each movement. Sixteen possible objects 
representing reaching targets can appear on the platters. 
They are divided into 7 categories: fruit, meat, nonalcoholic 
drinks, alcoholic drinks, sweets, toys, and cigarettes.  

 

Figure 1.  Experiment setup. 
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Figure 2.  Virtual task environment, with examples of objects. 

The subject’s hand was tracked and shown in the virtual 
environment as a red pointer. Left/right hand movement 
moves the pointer horizontally while movement away/toward 
the subject moves the pointer vertically.  

C. Signal acquisition 

Two g.USBamp systems (g.tec Medical Engineering, 
Austria) recorded EEG and EOG at 600 Hz. EEG was 
measured with the g.GAMMAcap and g.Butterfly electrodes. 
Electrodes were placed at locations F1, F2, F3, F4, Fz, FC1, 
FC4, C1, C3, CP1, CP3, CPz, P1, P3, P4 and PO3 of the 10-
20 system since information about movement direction can 
be found in those areas [5–7]. The reference was placed at 
Cz. EOG was measured with electrodes to the upper right 
and lower left of the eyes. EEG was bandpass-filtered from 
0.5 to 40 Hz. EOG was lowpass-filtered with a cutoff at 40 
Hz. 

The SMI RED (SensoMotoric Instruments, Germany), a 
remote eye tracking system, was mounted underneath the 
screen and tracked gaze position at a frequency of 60 Hz.  

The Telemyo 2400 DTS (Noraxon, USA) recorded EMG 
at 1.5 kHz. Electrodes were placed on the anterior, posterior 
and medial deltoid, pectoralis major, infraspinatus, biceps 
brachii, lateral and medial triceps using SENIAM placement 
[10]. EMG was bandpass-filtered from 10 to 500 Hz [10]. 

The QualiSys Oqus (Qualisys AB, Sweden), a system of 
infrared cameras and passive markers, tracked hand position 
at a frequency of 60 Hz. Cameras were placed in the room, 
and a glove with rigid markers was placed on the hand. 

D. Questionnaire 

Subjects were given a 9-item questionnaire. The first two 
questions were "How hungry/thirsty are you right now?" 
while the others were "How much do you like alcohol / 
cigarettes / meat / fruit / sweets / toys / nonalcoholic drinks?" 
Answers were given on a 5-point scale, with a special score 
of 0 if the subject does not consume that type of object at all. 
Each virtual object was then assigned three values: a 
preference, a need, and a product of the need and preference. 
The preference was equal to the relevant "How much do you 
like..." answer. Need was equal to the relevant hunger/thirst 
value:  hunger for fruit, meat and sweets and thirst for drinks. 
Cigarettes were assigned a need of 3 for smokers and 0 
otherwise. Toys were always assigned a need of 3. 

E. Measurement protocol 

Upon the subject’s arrival, the purpose and procedure of 
the study were explained. The hardware was applied and the 
questionnaire was given. Subjects then performed 40 trials: 
20 trials with 2 visible objects (“2-object trials”) and 20 
trials with 3 visible objects (“3-object trials”). Subjects were 
instructed to reach for the object they would prefer to have. 
Displayed objects were always from different categories. 

In each trial, the subject first rested for 5 s. The objects 
then appeared on the screen. The subject was shown a 
"please wait" message below the objects and mentally chose 
an object without moving. After 5 s, the message 
disappeared and the subject reached for the chosen object. 
Upon reaching it, the subject returned to the starting point. 

F. Target prediction 

Target prediction rules were obtained from recorded 
training data using supervised machine learning. Features 
were extracted from raw signals and input to a classifier. 
Prediction accuracy was obtained with crossvalidation. 

F.1 Feature extraction 

Features represent relevant information extracted from 
raw data. Most of these features are calculated over a 
window of time up to the present - the interval [t-L, t]. 
Multiple values of L (100-1000 ms) were tested in 
crossvalidation (section F.3). 

EEG was cleaned of eye artifacts using an adaptive filter 
with EOG as the noise input [11]. Three feature types were 
then extracted for each channel over a window: root-mean-
square values, mean frequencies (with Welch's method), and 
autoregressive coefficients (third-order, Burg method [6]).  

EOG consists of horizontal and vertical components. The 
mean values of both were calculated over a window. 

Eye tracker software outputs gaze position on the screen. 
Its mean value was calculated over a window.  

EMG features include each channel's root-mean-square 
value and variance calculated over a window. 

Hand tracking features include the current hand position 
and current hand velocity in x and y coordinates. 

Questionnaire features include the differences in 
preference, need, and need-preference products between 
objects 1 and 2 and between objects 1 and 3 in each trial. 

F.2 Classification 

Classification consists of two parts. From the entire 
feature set, relevant features are first selected using 
Sequential Floating Forward Selection (SFFS). This feature 
subset is then input into a linear discriminant analysis (LDA) 
classifier that outputs the predicted target. Both SFFS and 
LDA are commonly used with physiological data [12, 13].  

Classifiers were trained for each individual sensing 
modality and for a few modality combinations at 7 possible 
points in time. These combinations are: questionnaire + 
EEG; questionnaire + hand tracking; EEG + EOG; EEG + 
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EMG; eye tracking + EMG; eye tracking + hand tracking; 
EMG + hand tracking; all data. 

The 7 points in time are: 1 s / 3 s / 5 s after objects 
appear; at motion onset; after 25% / 50 % / 75% of 
movement time. Motion onset is defined as when the hand 
has moved 2% of the distance to the object. While slightly 
after actual onset, this threshold accounts for e.g. twitching.  

A classifier trained at some point in time also checks if 
any classifier trained with the same input type at a previous 
point in time would be more accurate. If so, that one is used 
instead. This is determined in crossvalidation (section F.3). 

F.3 Crossvalidation 

Prediction accuracy was calculated for each input at each 
point of time. This accuracy is defined as the percentage of 
correctly predicted targets and is calculated separately for 2-
object and 3-object trials using within-subject 
crossvalidation. For each subject, prediction rules are trained 
using all but one trial from that subject, then tested on the 
remaining trial. This procedure is repeated as many times as 
there are trials, with each used as the test trial once.  

This form of crossvalidation is different from subject-
independent crossvalidation, where classifiers are trained on 
some subjects and tested on others. Such subject-
independent crossvalidation is planned as a future extension 
of our work. 

III. RESULTS 

47.5% of 2-object trials reached for object 1 while 52.5% 
reached for object 2. 30% of 3-object trials reached for 
object 1, 35% for object 2 and 35% for object 3.  

One subject gave the same response to all questionnaire 
items, so his questionnaire was discarded. One subject's EEG 
was discarded due to hardware errors. In the other 9 subjects, 
EEG from 10 (of 360) trials was discarded due to artifacts. 

Figs. 3-6 show prediction accuracies for individual 
modalities (Figs. 3 and 4) and for different modality 
combinations (Figs. 5 and 6). 

 

Figure 3.  Results for individual sensing modalities in 2-object trials. 

 

Figure 4.  Results for individual sensing modalities in 3-object trials. 

 

Figure 5.  Results for modality combinations in 2-object trials. 

 

Figure 6.  Results for modality combinations in 3-object trials. 

IV. DISCUSSION 

A. Individual modalities 

EEG allows early prediction of the reach target, giving an 
accuracy of 72.8% for 2-object trials and 54.1% for 3-object 
trials a second after objects appear. This accuracy is similar 
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to findings in literature: Logar et al. [14] found 75% 
accuracy when predicting true/false responses while Lee [5] 
found 40% accuracy when predicting among 4 reach targets.  

Eye tracking and EOG show gradually increasing 
accuracy before limb motion onset. At motion onset, eye 
tracking accuracy increases to over 90% for all trials.  

EMG and hand tracking exhibit low accuracy before 
limb motion onset. At motion onset, accuracy increases for 
both modalities, though accuracy is lower in 3-object trials.  

The questionnaire has some predictive ability, though it 
is limited. There are also major intersubject differences, with 
2-object accuracies ranging from 50% to 90%. 

B. Combining modalities 

Combining questionnaires with EEG improves accuracy 
for 2- and 3-object trials, but combining questionnaires with 
hand tracking shows no improvement over a single modality. 

Combining EEG with EOG improves accuracy over EEG 
or EOG alone in both 2- and 3-object trials. It thus makes 
sense to include EOG with EEG in target prediction. 
Combining EEG with EMG shows no improvement over a 
single modality. This makes sense since EEG yields the 
highest accuracy before motion onset while EMG is only 
accurate after onset. Since data from the same time period is 
used from all modalities, no improvement is possible if 
individual modalities provide useful data at different times.  

Combining hand tracking with eye tracking and EMG 
with eye tracking yields lower accuracy than eye tracking 
alone. However, eye tracking only predicts the target while 
EMG and hand tracking also measure movement dynamics.   

Combining EMG with hand tracking shows no benefit 
over a single modality, likely since both contain similar data. 

Combining all modalities outperforms any single 
modality in 2-object trials, but not in 3-object trials. We thus 
recommend creating classifiers for different times based only 
on modalities relevant at that time. For example, predictions 
could first be made using EEG, then switch to hand tracking. 

C. Recommendations for use 

Some recommendations can be made based on our results 
and general experience with the hardware. 

- For high accuracy in target prediction, eye tracking is 
the optimal choice, especially with many possible targets. 

- For very early prediction, a combination of EEG and 
EOG gives the most information prior to limb motion onset. 

- If the subject is unable to perform a movement (e.g. 
assistive technologies), eye tracking or EEG and EOG are 
suitable. EMG may work if some muscle activity remains.  

- For unobtrusiveness, eye tracking is the only contactless 
solution in our study. However, hand tracking could be done 
with contactless systems such as Microsoft’s Kinect.  

- For real-time use, all examined modalities are suitable, 
though EEG artifact removal may be difficult to automate. 

V. CONCLUSIONS 

This paper shows the strengths and weaknesses of several 
sensing modalities. EEG can make early predictions, but is 
relatively inaccurate. It is suitable for early prediction or for 
users with motor disabilities. EMG and hand tracking are 
accurate after motion onset. They are suitable if the user 
should begin a movement and a device should augment it. 
Eye tracking is accurate for multiple targets, but gives no 
information about movement dynamics. It is useful if we 
wish to impose a motion or bring an object to the user. 
Finally, a user's preferences can in principle complement any 
modality, though they may not always be available. 

Multimodal data can be difficult to fuse with our 
approach. An exception was the combination of EEG and 
EOG, which gives higher accuracy than either individual 
modality. For better prediction, our algorithm would need to 
intelligently combine data from different time periods.  
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