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Abstract— Currently about one in eighteen of the American 

population suffer from cardiac Arrhythmias that lead to 

Coronary Heart Diseases and this rate is steadily increasing. An 

early monitoring and diagnosis of Arrhythmia based on 

Electrocardiogram signals can help in reducing mortality.  This 

paper primarily focuses on the application of Auto Associative 

Neural Network as a new classification approach, which does 

not require feature extraction task. The weights of a trained 

Neural Network are stored as class representative models that 

results in high compression gain with respect to the size of 

training data. The evaluation of the proposed technique is tested 

on segmented ECG beats of four different classes of Arrhythmia 

excluding normal pattern. These beats have been extracted from 

the MIT/BIH Arrhythmia database and compared against the 

state-of-the art template matching technique such as Dynamic 

Time Warping. The proposed technique yields an average 

accuracy of more than 97% and a relative compression gain of 

above 90%. 

I. INTRODUCTION 

The classification of Electrocardiogram (ECG) signal is 
very important to diagnose and treat patients with cardiac 
abnormalities like Arrhythmia [1]. Such Arrhythmias can 
especially be life threatening for a patient recovering from 
post Myocardial Infarction. The automatic detection of 
Arrhythmia is very indispensable for preventing the risk of 
heart attack or sudden death for cardiac patients, who are in 
the high-risk category.  

An ECG waveform is a graphical representation of the 
electrical activity of the heart. The waveform in itself is 
composed of the fusion of various activities of the heart such 
as Atrial De-polarization, Ventricular Repolarization, etc. 
Most of the important information in the ECG signal is 
concentrated in the P wave, QRS complex and the T wave. 
While making a diagnosis or investigation, a cardiologist often 
looks at the following features before making a decision: the 
relative positions of the waves, their magnitudes, shapes, and 
other derived interval features such as PR interval, PR 
segment, and width of QRS, QT interval and ST segment [2]. 

In general, most of the Arrhythmias [2] tend to exhibit a 
come-and-go kind of nature over the period of time. 
Therefore, it is required to have long-term analysis of ECG 
signal. Current signal processing algorithms are capable of 
analyzing the signal, recognizing the patterns and interpreting 
the anomalies associated with it. 
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A. Prior Work 

Over the years, automatic classifications of cardiac 
Arrhythmias were reported in several literatures [3-23]. It is 
the trend to choose rule-based and non-trainable approaches 
over classical machine learning-based methods because of 
lower computational and storage (not always) complexity and 
ease of implementation. Often, rule based engines are 
implemented using if-then-else logic, assuming that there is 
sufficient medical-domain knowledge in the rules to cover all 
the Arrhythmias.  The important interval features such as RR 
time interval, QRS width, PR interval, QT interval derived 
from each beat (one cardiac cycle) of ECG, are used to form 
the rule engine. Rule-based engine could be used reliably to 
detect Arrhythmias like Bradycardia and Tachycardia, which 
are dependent on the heart-rate.  On the other hand, machine 
learning algorithms can distinguish two similarly looking 
waveforms representing two different kinds of Arrhythmias. 
For such discrimination, various features [4-11] 
corresponding to different wave morphologies are exploited to 
train the machine learning algorithms [12-14]. Machine 
learning algorithms give better accuracy than rule-based 
approaches, but at the expense of higher computational 
complexity. Hence, there is a need for further investigation of 
an Arrhythmia classifier, which can involve lower complexity 
while still retaining reasonably high classification accuracy. 

This paper presents an Arrhythmia classification technique 
using an Auto Associative Neural Network (AANN) [15]. 
AANN was successfully used in diverse pattern classification 
problems such as face, speaker and language recognition [15]. 
In addition, it has also found to be successful in dimensionality 
reduction problems. The uniqueness of this Neural Network 
(NN) is that the input data to the network is also fed into the 
output stage. This ensures that the data can map onto itself by 
the non-linear mapping functions (or activation functions) 
present in the several nodes at various hidden stages. Note that, 
this classification paradigm does not involve any feature 
extraction module as such and can accept direct inputs of 
normalized data. Our experiments were conducted on 
MIT-BIH [16] data on four different Arrhythmia classes along 
with normal ECG.  

The organization of this article is as follows. In the Section 
II, we present the proposed framework. The detailed 
experimental setup is discussed in the Section III. In Section 
IV we present the results and in Section V we draw the 
principle conclusions of this work. 

II. PROPOSED FRAMEWORK 

A. Auto Associative Neural Network 

A typical architecture of an AANN is as shown in Fig. 1. 
The numbers of neurons present in the input and output layer 
are the same, so that they can both accommodate identical 
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input data. The activation functions involved in those outer 
layers are linear. 

 

Fig. 1. Typical architecture of an Auto Associative Neural Network 

 

The layers between the input and the output are generally 
composed of non-linear neurons (sigmoid functions tanh(arg) 
[15]) which are the mapping and de-mapping layers 
respectively. These two layers are chosen to have the same 
dimension as they contain the same number of neurons. The 
middle layer is the least complex layer with the lowest 
dimension and involves linear activation functions. Thus, this 
layer is called the compression or bottle neck layer from the 
data dimension’s point-of-view.  

The idea of choosing this kind of network is to allow 
self-mapping of the input (it is often called auto-encoder for 
identity mapping) such that the non-linear relations among the 
samples could be captured. This is unlike the conventional 
approach of standard NN, where the input data is accompanied 
with their respective class labels or targets. The AANN tends 
to learn in a non-discriminative manner, where the model does 
not require interacting with the data from other classes 
(anti-data). Non-discriminative learning can reduce 
considerably the off-line time as compared to the time taken 
by a discriminative training method. By off-line time, we refer 
to the total training time taken for an AANN to process a set of 
input data. In this problem, for each class, a separate AANN 
was trained and the weights of those networks were preserved 
for the testing phase. 

B. ECG Data Records 

The proposed AANN based Arrhythmia classification 
technique is validated on the available MIT-BIH public 
dataset [16]. This database consists of 48 half-hour excerpts of 
two-channel ambulatory ECG records acquired from 48 
subjects. The ECG recordings were collected from 25 men, 
aged between 32 to 89 years, and 23 women, aged between 23 
to 89 years. Each of the ECG records in the database is 
sampled at 360 samples per second. Each sample of the 
digitized signal is stored with 11-bit resolution over a 10 mV 
range. For this work, the signal from the lead II was used, as it 
shows more prominent R-peak amplitudes compared to the 
other leads. The database contains ECG beats with different 
morphologies that give enough variations to the Arrhythmia 
classification algorithms.   

C. Pre-processing of ECG records 

Pre-processing of ECG data requires cleaning of several 
artifacts and noise such as base-line wanderings, and muscle 
noise. In this work, a Butterworth high-pass filter was used 
with 0.5 Hz cut-off frequency to remove the low-frequency 
base-line wandering effect. A low pass filter with a cut-off 
frequency of 40 Hz is then applied to remove the 50-60 Hz 
power line interference. It is conjectured that, for an ECG 
signal, most of the vital information is found within the 
frequency range of 0.5 to 40 Hz [17]. 

D. R-peak detection 

A number of algorithms [18] are available in the literature to 
determine location of R-peaks from ECG records. However, 
in the MIT-BIH database, each recording is accompanied by a 
cardiologist’s annotation [16] that serves as the ground truth. 
For this work, these prior annotated data were considered as 
locations of the R-peaks. The R-peak locations help to 
segment and segregate the individual beats from the ECG 
records.  

E. Beat selection and normalization 

Once the locations of the R-peaks are marked, the start and 

the end of a beat are determined by moving forward and 

backward from the R-peak location as shown in the Figure 2. 

Note that a beat represents one entire cardiac cycle that 

includes P wave, QRS complex, and T wave. We used 351 

sample points, from R-peak position - 150 samples to R-peak 

position + 200 samples, which corresponds to one complete 

cardiac cycle. The period of the cardiac cycle was chosen 

from the ground truth average RR interval, which is defined 

as the interval between one R-peak and the adjacent R-peak 

location. This single beat is normalized by subtracting the 

beat mean and divided by the beat variance giving a zero 

mean and unit variance as:  

 

(1) 

 
where, x,  ̅, µ and σ are respectively the original beat, the 

normalized beat, the mean and the variance calculated from 
original beat.  This normalization was done so that the 
AANN does not need to operate on a wide dynamic range of 
input data.  

 

 Fig. 2. ECG beat selection procedure in continous stream of data 

Since each beat carries the same number of samples, the 
time axis was not normalized. Here, the same number of 
samples, that is 351, was used across all the classes of 
Arrhythmia and normal beats. Note that the same 
normalization method was applied during both the training 
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and the testing phases. Depending on the origin of the 
Arrhythmia, the morphologies of ECG beats are widely varied. 
Hence, it would be more intuitive to include PQRST waves as 
a single beat. Care was taken during the beat selection process 
to include all the waves in a beat.  The name of the Arrhythmia 
classes that have been considered for the experiments are Left 
bundle branch block (LBBB), Right bundle branch block 
(RBBB), Premature ventricular contraction (PVC), and Atrial 
premature contraction (APC).  The symbol N is used to 
represent the Normal Sinus Rhythm class. 

III. EXPERIMENTAL SETUP 

The numbers of training and test beats for each of the five 

classes are shown in Table I below. 

TABLE I.  NUMBER OF BEATS INVOLVED IN TRAINING AND TESTING 

Class labels 
No. of Training 

Beats  

No. of Test 

Beats  

N  1240 8700 

LBBB 1151 8069 

RBBB 965 6769 

PVC 450 3167 

APC 351 2078 

 

In this work, the AANN structure with 351-20-20-20-351, 

were chosen, where 351 is the length of one beat. The values 

20 for hidden layers are experimentally chosen for better 

performance without a scope for over fitting. The sequences 

of activation functions used for the five layers are linear, 

non-linear, linear, non-linear, and linear respectively. For 

each of the pattern classes (here Arrhythmia), the AANN was 

trained using a back-propagation [19] (BP) algorithm. An 

AANN uses the BP algorithm in batch mode till either the 

number of epochs reach 3000 or the error change is less than 

0.001. After the training, the weights of all the NN are 

preserved so that they can be used for the testing stage.  

Note that the direct input of the beat signal to the AANN 

saves much on the computation time necessary for feature 

extraction (either time or frequency domain features). At the 

time of classification, an unknown beat is submitted to all the 

AANNs’ inputs and the output beats are computed (or 

predicted) through their stored weights. Then, the sum of the 

squared difference was calculated between the input beat 

(Beatin) and the beat generated (Beatpred) from output for each 

of the network models as in Eq. (2) below: 
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 Where, Di is the i
th

 distance for the i
th

 AANN and i = 1 to 5. 

N is the data length and the other symbols have their usual 

meanings. Finally, the ANNN that shows the lowest score 

(that is highest proximity) among all the scores, the class label 

(i*) corresponding to that AANN, is the final verdict for the 

unknown class label (see Eq. (3)): 
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Figure 3 gives an example of how the trained AANN could 

approximate the unknown input with its generated output 

through the network. The red line shows the input to the 

network while the blue one is the approximated signal from 

the same network. The low score (0.0018 in normal class) as 

sum-of-squared error indicates the ability of auto encoding to 

provide a good approximation. When viewed differently, the 

score or error will be higher, if the class label of unknown 

beat and that of the trained AANN are different. This also 

shows the AANN’s capability of capturing generalized wave 

morphology from a training corpus with similar waves.   

 
Fig. 3. The approximation capability of a  trained AANN for Normal class 

IV. RESULTS AND DISCUSSIONS 

Arrhythmia classification results using MIT-BIH are shown 

in Table II and III given below; 

TABLE II.  CLASSIFICATION ACCURACIES (TRUE POSITIVITY) 

Class Label 

Dynamic Time-Warping  Proposed 

(AANN 

based) 
Euclidean 

Distance 

Cosine Similarity  

measure 

N 93.68 94.63 97.50 

LBBB 95.67 95.68 98.66 

RBBB 95.78 95.82 99.35 

PVC 95.79 95.17 97.10 

APC 91.17 92.32 95.62 

TABLE III.  CONFUSION MATRIX FOR ANNN BASED PARADIGM 

    Class 

labels of  

Neural Net 
N LBBB RBBB PVC APC 

Total 

Test 

data 
Class labels 

of Test 

sample 

N  8482 42 9 134 33  8700 

LBBB 56 7961 1 50 1  8069 

RBBB 9 5 6725 28 2  6769 

PVC 34 42 3 3075 13  3167 

APC 73 10 2 6 1987  2078 

The results given in the Table II illustrates the fact that the 

AANN outperforms considerably in terms of true positivity, 

when compared with similar approaches like Dynamic Time 

Warping (DTW)-based template matching method [17, 20]. 

In DTW paradigm, the original training templates need to be 

stored for comparison. On the same test dataset, DTW-based 

distance measure was used to compare the distance with the 

templates (here, the ECG beats) stored in the training corpus. 

For any unknown test sample, the DTW distances between 

the test beat and all the training samples from a particular 

class are determined first. The lowest distance among all the 
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computed distances is then stored temporarily for future use. 

The process of one-to-all distance calculation is done for all 

the five classes. Finally, the class label corresponding to the 

minimum distance among the lowest distances from all the 

pattern class would be the final class label for the DTW-based 

technique. No normalization was required for the distances, 

as the beats were already normalized in Eq. (1).  Like the 

AANN, the DTW too [17, 20] does not involve feature 

extraction techniques while classifying the Arrhythmias. 

However, DTW is computationally expensive at the time of 

testing, as it involves dynamic programming. Contrary to that, 

the proposed method’s requirement is to store only the 

weights of AANN to represent the training dataset.  In this 

work, the R-peak locations were chosen from the ground truth 

data, which is hand labeled and considered to be of gold 

standards.  However, the performance of the proposed 

algorithm may reduce depending on the performance of the 

automatic R-peak detection algorithm [18] used.   

In Table III, we have shown the confusion matrix for the 

proposed technique.  It can be observed that the inter class 

confusions are (see the off-diagonal elements) significantly 

less than those of intra classes. This indicates the AANN’s 

ability to discriminate one class from another although the 

training was done in a non-discriminative manner.  Table IV 

shows the compression ratio of the size of AANN weights to 

the size of original training data which was found to be 18.9: 

1 or 94.72%.  

TABLE IV.  RELATIVE COMPRESSION  

Data 
Size  

(in KB) 

Relative Compression 

(Size of Total Train Data – Size of 

Weights of NNet)/Size of Total 

Train Data *100 

Total Train data 10925 - 

Weights of Neural 

Nets 
576 94.72% 

V. CONCLUSION AND FUTURE SCOPE 

An Auto Associative Neural Network-based Arrhythmia 

classification technique is presented in this paper. The 

weights of the Neural Network are saved for posterity instead 

of storing the reference template of beats. Hence, the storage 

requirement is reduced drastically. The AANN also does not 

involve any feature extraction step, which gives it an 

advantage of lower complexity at the time of testing. We have 

presented our results on four different Arrhythmia classes and 

Normal Sinus Rhythm. This shows the considerable 

improvement of this algorithm, in terms of classification 

accuracy, over the state-of-the-art technique such as Dynamic 

Time-Warping.  

 The neural network was trained here in a 

non-discriminative way. For the future, it would be 

interesting to also investigate the training of the AANN in a 

discriminating manner. Also the AANN were trained for a 

particular size of the beat. It might be also worth investigating 

the network’s performance on beat of various sizes and that 

are drawn from different Arrhythmia classes.  
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