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Abstract—This paper explores how noise can improve 

prediction accuracy of the Event-Related Potential (ERP) based 

on P300 signals. We propose an array of ICA-Based P300 

processing systems with additive white Gaussian noise. The 

array system attains maximum accuracy when noise intensity is 

not zero and thus the system shows the stochastic resonance 

effect. The prediction accuracy increases as the number of 

stages of the array increases.  Experimental results show that 

increasing the array size with the proper amount of noise can 

improve the accuracy of the original P300 signal detection 

using ICA-based subspace projection technique.  

I. INTRODUCTION 

The well-known problem of brain-computer interface 
(BCI) based on P300 signals is the inaccuracy of detection 
and the requirement of a large number of stimulus repetitions 
[1-7].  The detection performance depends on the number of 
repetitions, the number of electrodes, and the signal varies 
over time and persons.  The P300 signal is the event-related 
potential.  This signal is a small change in the brain activity 
and corresponds to a positive deflection at latency about 300 
ms [2, 3].  The response usually occurs 300 ms after stimulus 
when a subject pays attention to the desired character [2]. 
The purpose of a P300 speller system is to detect the 
presence of P300 in the EEG.  

Researchers have continuously developed algorithms to 
improve P300 detection performance [1-7]. The key 
processes in P300 detection are feature extraction and 
classification.  Kaper et al. propose support vector machines 
(SVM) for classification [5].  The algorithm finds the correct 
prediction using only five repetitions and requires only 10 
electrodes on strong signal positions. Xu et al. introduce an 
algorithm based on independent component analysis (ICA) 
for P300 detection [6]. They show that the algorithm 
achieved an accuracy of 100% in P300 detection within five 
repetitions. Bostanov proposes the continuous wavelet 
transform (CWT) and Student's t-statistic [7]. The method is 
suitable for classification of single-trial ERPs. This algorithm 
achieves an accuracy of 100% in P300 detection within six 
repetitions.     

Stochastic resonance (SR) is a phenomenon when noise 

at certain levels of intensities can enhance weak input 

signals [8-11].  The SR effect can also occur in array 

systems [12-15].  Coupling together more than one SR 

elements can improve output performance.  Patel and Kosko 
propose that noise can improve statistical signal detection 

for the array-based nonlinear correlators in Neyman-Pearson 
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(NP) and maximum-likelihood (ML) signal detection [13]. 

They show that the noise benefit rate improves in the small-

quantizer noise limit as the number of array quantizers 

increases.  Das et al. examine the effects of suprathreshold 

stochastic resonance in a parallel array of identical nonlinear 

threshold-based devices [14]. They show that the 

phenomenon can enhance the transmission of signals of any 

distribution and amplitude.  Lei et al. present array-enhanced 

logical stochastic resonance [15].  They show that increasing 

the number of arrays can extend the range of optimal 

parameter domain in which the reliable logic output can be 

obtained. 

 We propose an array of P300 processing systems with 

additive white Gaussian noise. We use the ICA-based 

subspace projection techniques [6] as a building block in the 

array with additive white Gaussian noise. We test our 

systems on the BCI competition II dataset IIb (P300 speller 

paradigm) [16, 17].  Experimental results show that noise 

can improve the P300 detection performance. This implies 

that we have noise benefits or the “stochastic resonance” 

effect. The results also show that increasing the number of 

stages can enhance the prediction accuracy. 

II. P300 SPELLER PARADIGM DETECTION AND               

ARRAY ENHANCED STOCHASTIC RESONANCE 

This section describes the idea of ICA-based subspace 

projection technique to analyze the P300 signals [6, 18-21]. 

Then we describe the concept of stochastic resonance with 

array processing. 

A. ICA-based subspace projection  

We preprocess the data signal T with a 0.5-8 Hz 

bandpass filter to obtain�T��.  Then we process T� using 

principle component analysis (PCA) algorithm to reduce the 

dimension of the EEG data from 64 channels to 22 channels. 

The reduced-dimension data �V L 8T�  is the input data for 

independent component analysis [6].   

Independent component analysis (ICA) attempts to 

recover the independent sources from multichannel 

observations [6].  Let O L >O5á O6á å á Oá? be J independent 

unknown sources. We can only observe the signals V L
>V5á V6á å á Và? as a linear combination of O: 

 V L #O

 

(1) 

where # is the unknown mixing matrix. The goal is to 

recover O or approximate it with Q using a linear operation   

 Q L9V (2) 

where 9 is the desired demixing matrix. We apply ICA 

algorithm to the data V to obtain the demixing matrix 9. 
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There are several ICA techniques to separate the original 

source signals O from the observed signals such as FastICA, 

Infomax ICA and Extended Infomax ICA [19-21]. The 

FastICA algorithm is appropriate for extracting artifacts 

from EEG data [21]. We use the FastICA algorithm to find 

the demixing matrix 9. We also apply the principal 

component analysis (PCA) to reduce the dimensions of the 

signals obtained from sensors. 

Steps of FastICA [19]:  

1) Initialize weight vector  S4�(random)   

2) Let � �� � � �� �
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4) Go back to step 2 if not converged (�SÜ>5 ®SÜ� 	 s;  
 

Bandpass Filter

0.5-8 Hz
PCA

ICA

training

Training 

data

Bandpass Filter

0.5-8 Hz

Spatial filtering 

H

Temporal 

manipulation 

with P300 priori 

knowledge 

Back projection

Testing 

data

Training 

Phase

Testing 

Phase

Noise

source

n

xc

x

x

u

uc

P300 Processing System

Word 

prediction

y

z

H

xc

x cc

d

 
Figure 1. P300 processing system using ICA-based subspace projection.  

 

Figure 1 shows the ICA-based P300 speller prediction 

system that consists of training and testing phases [6, 9-11, 

22, 23].  The training phase finds the spatial filtering * from 

PCA and ICA of the data. The testing phase uses * to obtain 

the enhanced signal and processes that signal for character 

prediction. 
 

Training phase:  We preprocess the EEG data x with a 0.5-

8 Hz bandpass filter to obtain T�.  Then we average the data 

T� from the same stimulus of all repetitions at the time 

window of 0-650 ms after stimulus. Then the PCA algorithm 

reduces the dimension of the EEG data from 64 channels to 

22 channels: V L 8T� where V is the reduced-dimension data. 

Then we apply FastICA to the projected data V to obtain 9.  

The spatial filtering * is the product of the matrix 8 from 

PCA and the matrix 9�from FastICA [6]: * L98. 
 

Testing phase: We classify testing data using the spatial 

filtering * from training phase and the temporal 

manipulation of these independent components with P300 

priori knowledge [6]. The temporal manipulation considers 

the independent components in time domain during the 

latency range of P300.  We keep the independent 

components�Q� that have peak amplitudes between 250-367 

ms after stimulus.  Then we find the back projection of Qñ:  

@ L �*±Qñ (3) 

where @ is the enhanced signals, *± is pseudo-inverse of the 

spatial filtering *, and Qñ is the result of Q after temporal 

manipulation of independent components. Thus our 

algorithm is a part of the algorithm that proposes in [6].  

The word prediction block considers which character is 

most likely from the peak and area of the corresponding row 

and column of the enhanced signal @ in the 275-370 ms 

window.  It also considers peak and area of the average of 

signals from the corresponding row and column of a 

character in the 275-370 ms window.  Thus each character 

has four features.  Note that there are 6 rows and 6 columns 

in the P300 speller paradigm (36 characters in the alphabet 

set).  Then the block gives as output a character that has 

highest count of the highest peaks and areas [6].  

B. Stochastic Resonance in Array System 

We consider the collective noise benefits that occur in a 

system of parallel elements or blocks. Noise benefits or 

stochastic resonance in parallel array can improve the 

accuracy of signal detection [12-15]. 
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Figure 2.  Noise-added array processing. The P300 Processing system can 

use ICA-based subspace projection technique as shown in Figure 1 or other 

techniques. The system uses independent white Gaussian noise JÜ with 

equal variance êá   
 

Figure 2 shows the schematic diagram of our SR-array 

processing.  The system uses 0 stages of P300 processing 

systems.  Each stage processes the same filtered signal T� of 

the raw EEG data T obtained from sensors. Then each 

system adds independent white Gaussian noise JÜ to the 

signal T� to obtain the noise-added signal TÜ
ññ:  

 TÜ
ññ �L T � E JÜ (4) 

where JÜ is zero-mean noise with variance êá
6 at stage i.  The 

output UÜ is one of the 36 characters {A,…,Z,1,…,9,_}.  

Then the voting block picks as its output the character that 

obtains the highest counts from N stages.  In case of ties we 

randomly pick the output character from the ties.  Then we 

calculate the prediction accuracy 2º� as a ratio of the number 

of correct prediction and the total number of test characters 

in the experiment: 

 100u 
M

D
PA

 (5) 

where & is the number of correct characters and / is the 

number of target characters. 

The SR effect occurs when the performance of the 

system is maximized at nonzero noise intensity. The noise 

*± 
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source can be artificial noise that design engineers would 

add to maximize the performance. An array of P300 systems 

with a suitable level of noise intensity can improve the 

prediction accuracy.     

III. EXPERIMENTAL RESULTS  

A.  EEG Data 

We use the EEG dataset IIb from the BCI competition 

2003 database [16, 17] to test our system. The dataset 

contains signals collected from one subject with 64 

electrodes and sampled at 240 Hz. The set of test data 

consists of 73 characters. The P300 response of each 

character is collected from 12 random flashing 

rows/columns which were repeated 15 times (15 repetitions) 

in order to reinforce the P300 response.  We test our systems 

using 1 to 15 repetitions of the signals. 

B. Experiment Setup and Results 

 We use an original ICA-based P300 prediction system as 

a building block for an array system as shown in Figure 2.  

Then we add white Gaussian noise to the EEG signal.  The 

noise in each block is independent of the others. The noise 

intensity varies from 1 µV to 130 µV.  The number of stages 

N also varies: N = 1, 5, 15 and 20.  We test the system based 

on 1 to 15 signal repetitions but show only a few cases. 

Table I shows the prediction accuracy of the array 

systems based on various numbers of signal repetitions and 

array sizes. The results show the maximum prediction 

accuracy in each case with respective optimal noise intensity 

(µV).  The prediction accuracy with noise is higher than 

without noise in all cases except when the system uses signal 

with 15 repetitions and the array has only one stage N = 1 

(the original P300 speller).  But the accuracy increases as the 

number of stages of the array increases.   

Figure 3 shows that the prediction accuracy tends to 

increase as noise intensity increases from zero. The 

prediction accuracy attains a maximum at nonzero noise 

intensity and it decreases when the noise intensity is too 

large.  Figure 4 shows that prediction accuracy increases 

from 23.29% to 95.89% as the number of signal repetitions 

grows from 1 to 15 for a system with single stage (N=1) and 

without noise (original P300 speller system). 

TABLE I.   ACCURACY OF P300 SPELLER PREDICTION 

Number of 

Repetitions 

Accuracy 

without 

noise (%) 

Maximum accuracy (%) 

(Optimal noise intensity, êâãç (µV)) 

Number of Stages N 

1 5 15 20 

1 23.29 
25.07  26.44  26.30  26.71 

(22) (80) (94) (112) 

3 45.21 
48.63 50.68 52.33 52.88 

(18) (70) (86) (66) 

5 63.01 
65.21 69.04 70.68 72.47 

(22) (66) (88) (98) 

7 75.34 
78.22 77.81 79.45 80.41 

(10) (16) (88) (96) 

9 83.56 
86.03 85.89 85.62 86.44 

(16) (16) (54) (40) 

11 89.04 
91.37 92.74 92.74 92.74 

(10) (16) (52) (32) 

13 90.41 
92.05 93.84 94.52 95.34 

(12) (30) (62) (74) 

15 95.89 
95.89 95.34 96.58 97.12 

(0) (16) (44) (56) 

 
(a) 1 Repetition 

 
(b) 5 Repetitions 

 
(d) 11 Repetitions 

 
(d) 15 Repetitions 

Figure 3. Noise improves prediction accuracy of P300 speller.  The plots 

show prediction accuracy improvement for 1, 5, 11, and 15 signal 

repetitions with number of stages N = 1, 5, 15 and 20.  The system attains 

maximum accuracy when noise intensity is nonzero in most cases.  The 

prediction accuracy also increases as the number of stages N increases.   
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Figure 4.  Summary of P300 prediction accuracies.  Noise can improve the 

prediction accuracy in array systems.  The results also show that accuracy 

tends to increase as the number of stages increases.  The noise benefit is 

more pronounced when the system uses only a few stimulus repetitions. 

 The results also show that prediction accuracy tends to 

increase as the number of stages N in the array increases 

from N=1 to N=20. We obtain maximum prediction 

accuracy at 97.12% with optimal noise (êâãç = 56 µV) for 

N=20 and 15 signal repetitions.  Note that our regular P300 

processing system does not achieve 100% prediction 

accuracy for this data set because we do not use the spatial 

manipulation of the independent components as in [6].  But 

this imperfection allows us to examine the effect of noised-

added array systems.   

 The regular P300 speller system processes 15 repetitions 

of signals. The accuracy of this system (regular ICA-based 

P300 detection with N=1) decreases as we add more noise.  

But the results show that the prediction accuracy increases as 

we add more stages and use a suitable level of noise 

intensity as shown in Figure 3(d).  Figure 4 shows a 

summary of noise benefits that prediction accuracy tends to 

increase as the number of stages increases. The noise 

benefits are more pronounced when the systems use only a 

few number of stimulus repetitions. 

IV. CONCLUSION 

 This paper explores the use of array of ICA-Based P300 

detection systems with additive white Gaussian noise.  

Experimental results show that we can improve P300 signal 

detection accuracy by adding independent noise into the 

brainwave signals obtained from sensors.  The system shows 

the stochastic resonance effect when we consider the speller 

prediction accuracy.  The prediction accuracy also tends to 

increase as array size increases.  The optimal noise intensity 

also depends on the number of stages and the number of 

signal repetitions and remains an open research problem.  

The results also suggest that future research work on EEG 

signal classification should consider the role of noise and the 

use of array systems to improve the prediction accuracy.   
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