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Abstract— This paper demonstrates a better classification
performance of an ensemble classifier using a regularized linear
discriminant analysis (LDA) for P300-based brain-computer
interface (BCI). The ensemble classifier with an LDA is sensitive
to the lack of training data because covariance matrices are
estimated imprecisely. One of the solution against the lack
of training data is to employ a regularized LDA. Thus we
employed the regularized LDA for the ensemble classifier
of the P300-based BCI. The principal component analysis
(PCA) was used for the dimension reduction. As a result, an
ensemble regularized LDA classifier showed significantly better
classification performance than an ensemble un-regularized
LDA classifier. Therefore the proposed ensemble regularized
LDA classifier is robust against the lack of training data.

I. INTRODUCTION
Brain computer interface (BCI) translates a human’s brain

signal into commands for controlling devices [1]. Among
many types of brain monitoring technologies such as a
magnetoenchphalography (MEG), a functional magnetic res-
onance imaging (fMRI), and a near infrared spectroscopy
(NIRS), a non-invasive electroencephalogram (EEG) has
been employed often for BCIs because of the price and
the resolution in time domain with direct measuring of the
brain activity though the signals suffer from huge noise
[2]. Three features of brain activities, a P300 [3], a steady-
state visual evoked potential (SSVEP) [4] and an event-
related desynchronization / synchronization (ERD/ERS) [5]
have been used to build a BCI system. We are focusing on
the P300-based BCI with its better performance and less
intensifications.

The P300-based BCI was first proposed by Farwell and
Donchin [6]. They proposed a spelling device that worked
by detecting the P300, one of event related potential (ERP)
components that had a peak 300 milliseconds (ms) after
the stimulus onset. Fig. 1 shows a typical P300-based BCI
system for spelling letters. The letters on the stimulator were
intensified by a row or a column by random. A subject must
focus on a desired letter and count silently when the letter
was intensified. The paradigm, called an oddball paradigm,
elicits the P300 component of the ERP. At the same time,
ERPs were measured and the signals were translated into a
command by a computer.

The translation performance of the P300-based BCI de-
pends on the classification algorithms. The linear discrimi-
nant analysis (LDA) and the stepwise LDA (SWLDA) are
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Fig. 1. Typical P300-based BCI system that outputs 36 types of letters.
The system consists of a stimulator that presents an intensification, EEG
measurement system (EEG electrodes and an amplifier), and the processing
system in the computer. The gray letters on the stimulator turns white by
random order, and then the ERPs elicited by the paradigm were classified
to predict an input letter.

well used and powerful classifiers [7]. In addition to that,
the ensemble classifiers have been much studied recently.
The ensemble of support vector machines (SVMs) that won
the BCI competition III data set II (P300-based BCI) can be
considered as one of most powerful classifiers [8]. Arjona et
al. evaluated the ensemble LDA classifier using a bagging
and a boosting [9]. Johnson and Krusienski proposed the
ensemble SWLDA classifier [10]. Salvaris et al. evaluated
the ensemble of LDAs and showed that it achieved the
similar performance of the ensemble of SVMs [11]. However
each classifier in an ensemble classifier must be trained
by a smaller number of training data because the training
data were first partitioned [8]. The performance of the
ensemble classifier may decrease when a smaller number of
training data are provided. Thus the ensemble classification
algorithms are required to overcome the lack of training data.

In this study we evaluated the ensemble regularized LDA
classifier for the P300-based BCI. The classification perfor-
mance was evaluated offline by a cross-validation reducing
its training data. The principal component analysis (PCA)
was used for the dimension reduction. The originality of this
study was that the regularized LDA was first employed for
the ensemble classifiers and classification accuracies between
ensemble regularized LDA classifier and the ensemble un-
regularized LDA classifier were compared.

II. ENSEMBLE REGULARIZED LDA CLASSIFIER

The ensemble classifiers are trained by the partitioned
training data. However the number of the training data in a
partition becomes too small when a small number of training
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data are provided. To address the problem, we employed the
regularized LDA classifier for the ensemble classifier because
it showed robust classification performances when small
training data were given [12]. Thus we have presumed that
the regularized LDA make the ensemble classifiers robust
against the shortage of training data.

A. Learning LDA classifiers

The weight vectors of the ensemble LDA classifier for
P300-based BCI were trained as a binary classification
problem of target ERPs that contain P300 and non-target
ERPs. ERPs measured by the system were first trimmed
for 700 ms from the stimulus on set, then baselines were
subtracted. After that the signals were smoothed (moving
average, analyzing window=3), downsampled to 43 Hz and
vectorized. Then the training data were divided into K = 5
partitions in time series (naive partitioning [8]). In this
case a partition contains 180 ERP data corresponding to a
letter, 30 of which belong to the target class that contains
P300. We denote the number of training data in the target
class by Ndata

2 = 30, and that in the non-target class by
Ndata

1 = 150. Then PCA was applied and 1–140 principal
components were used as a feature vector. Thus the size of
the feature vector was Ndim = 140. We denote the training
data in kth partition by xtrain

k,t ∈ <140, k ∈ {1, 2, ...,K} , t ∈
{1, ..., 180} and the label lk,t ∈ {1, 2}, where lk,t = 2
represent that xtrain

k,t belongs to the target class that contains
P300 and lk,t = 1 means that xtrain

k,t belongs to the non-
target class.

In the ensemble LDA classifier, the LDAs were trained
from a corresponding partition, respectively. Regarding kth
partitioned data, a mean vector for a class l ∈ {1, 2} can be
calculated by

µ̂k,l =
1

Ndata
l

∑
t:lk,t=l

xtrain
k,t , (1)

and a covariance matrix can be estimated by

Σ̂k,l =
1

Ndata
l − 1

∑
t:lk,t=l

(
xtrain
k,t − µ̂k,l

) (
xtrain
k,t − µ̂k,l

)T
.

(2)
The mean covariance matrix is derived by

Σ̂k =
1

2

2∑
l=1

Σ̂k,l. (3)

Finally kth weight vector of the LDA can be computed by

wk = Σ̂−1
k

(
µ̂k,2 − µ̂k,1

)
. (4)

The weight vectors must be computed for all partitions. The
weight vectors of LDA classifiers were used to compute a
score for decision making.

B. Regularized LDA classifier

The regularized LDA classifier was first introduced to the
P300-based BCI by Blankerz et al. [12]. In the regularized
LDA classifier, covariance matrices were estimated in a
different way. The covariance matrix estimated by (2) was
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Fig. 2. The structure of the ensemble regularized LDA classifier. Flows
of training data were illustrated by broken lines and that of the testing
data were depicted by solid lines. The training and testing data were
provided by a cross-validation. The training data were first preprocessed,
then partitioned into 5 partitions. In this case a partition contained 180
ERP data corresponding to a letter, 30 of which were labeled as a target
that contains P300. Then principal component analysis (PCA) was applied
for each partitioned training data, then each regularized LDA classifier
(RLDA) was trained. Note that projections of PCAs were computed by each
partitioned data, respectively. After the training, testing data corresponding
to a letter (180 ERPs when Nseq = 15) were classified. The testing data
were first preprocessed, then PCA and RLDA were applied to compute the
scores for the decision making.

hard to estimate for the high dimensional data with a small
number of training data. Instead of (2), a modified covariance
matrix was used for the LDA classifier:

Σ̂k,l(γ) := (1− γ)Σ̂k,l + γνk,lI, (5)

where γ ∈ [0, 1] is a tuning parameter and

νk,l :=
trace(Σ̂k,l)

Ndim
. (6)

Note that regularized LDA is equivalent to un-regularized
LDA when γ = 0. We introduced the regularized LDA
into the ensemble classifier and evaluated its classification
accuracy.

C. Decision making

A input letter was predicted by finding maximum scores
that were associated with intensifications. Since the letters
were intensified by rows and columns, the letters can be
predicted by 2 intensification numbers. A set of column
intensifications is denoted by C = {1, 2, ..., 6} while a
set of row intensifications is denoted by R = {1, 2, ..., 6}.
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In the offline analysis the maximum number of sequences
Nseq ∈ {1, ..., 15} can be changed. We denote a testing
feature vector that belongs to the ith intensification, jth
sequence of intensification in kth partition by xtest

i,j,k. Scores
for predicting a letter can be computed as follows:

si =
Nseq∑
j=1

K∑
k=1

wk · xtest
i,j,k, i ∈ C ∪R. (7)

The letter can be predicted by finding the maximum scores
among rows and among columns, respectively:

d =

(
arg max

p∈C
{sp} , arg max

q∈R
{sq}

)
. (8)

The entire classification procedure is summarized in Fig. 2.

D. Data sets and a cross-validation

A P300-based BCI data set was recorded from 10 healthy
subjects (10 males and a female aged 22–28 years old, data
of a male subject were removed because tasks were not
completed due to a sickness). The experimental protocol
was approved by the Internal Ethics Committee at Kyushu
Institute of Technology. Our BCI had 36 letters that formed
a 6 × 6 matrix on the screen. The letters were used to
input a letter by a thought. A target letter was provided to
a subject before the intensification. A row and a column
of the letters in gray were intensified by turning the letters
white for 100 ms, then returned gray for 75 ms. All rows
and columns were intensified by the random sequence. The
subject must count silently when the target letter on the
screen was intensified. In a sequence all rows and columns
were intensified. We used 15 sequences of intensification to
predict the target letter. Totally 180 ERP data were recorded
to train or predict a letter. The data set for a subject contained
ERP data corresponding to 50 letters and they were used for
the offline analysis.

We amplified EEG signals by BA1008 (TEAC Co., Ltd.,
Japan) and digitized them by AIO-163202FX-USB (CON-
TEC Co., Ltd., Japan) with 128 Hz sampling late. The signals
were filtered by a 0.11–30 Hz band-pass filter. The EEG
electrodes were placed at Fz, Cz, P3, Pz, P4, PO7, Oz
and PO8 according to the international 10-20 system, where
the ground electrode was placed at AFz and the reference
electrodes were on the mastoids.

The classification performance was evaluated by a cross-
validation method. Its training data were reduced as shown
in Fig. 3. We first divided the training data and testing data
like a 10-fold cross validation. Thus 45 sets of ERP data
were assigned for training data and 5 sets were provided
for testing data. However, 45 sets of ERP data seemed too
large because it took approximately 22.5 minutes to record
them before an online test. Thus we reduced the training
data to 5 sets which contain 900 ERP data and evaluated the
classification performance.

III. RESULTS

We evaluated classification accuracies of the ensemble
regularized LDA classifier when the small training data
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Fig. 3. The way to reduce the training data in the 10-fold cross-validation.
The training data were divided into 10 blocks in time series then the white
blocks were assigned to training data (Tr) and the gray blocks were used
for testing data (Te). After that the training data blocks were removed (-)
except for the last block before the testing data located at the left side. In
the last pair, the 10th block was used for training data when the first block
was assigned to testing data. Each pair of training and testing data were
used for the offline analysis.

were given. We changed the regularization parameter γ and
visualized the accuracy-gamma curves for each sequence of
the intensification Nseq. We applied the same γ for each
regularized LDA in the ensemble classifier.

Fig. 4 shows the classification performance of the ensem-
ble regularized LDA classifier. Most curves have a peak at
γ = 0.05 or γ = 0.1. The peak was not either γ = 0
(an ensemble un-regularized LDA classifier) or γ = 1. In
addition to that, the classification performance decreased
when 0.5 ≤ γ < 1.

The classification performance of the ensemble regularized
LDA classifier was better than that of the ensemble un-
regularized LDA classifier. A two-way repeated measure
ANOVA showed significant main effects of the regularization
parameter γ (F (6, 54) = 79.27, p < 0.01) and the number
of sequences Nseq (F (14, 126) = 142.9, p < 0.01) and their
interaction (F (84, 756) = 3.332, p < 0.01). The post-hoc
test showed significant differences except for pairs γ = 0 and
γ = 0.5, γ = 0.02 and γ = 0.1, and γ = 0.05 and γ = 0.1
(p < 0.01 for all). Judging from these results, γ = 0.05 or
γ = 0.1 was optimal for the classification.

IV. DISCUSSION

In this research we evaluated the ensemble regularized
LDA classifier when a small number of training data were
given. As a result, the proposed method showed better
performance than the ensemble un-regularized LDA classi-
fier. Thus, the ensemble regularized LDA classifier is more
practical for the online use because in a practical situation
just a smaller number of training data are thought to be
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Fig. 4. Classification accuracy of the ensemble regularized LDA classifier
when small training data (900 ERPs) were given. The performance was
computed by changing the number of sequences Nseq and the regularization
parameter γ.

obtained.
Interestingly, the peaks of accuracy-gamma curves were

different in each sequence Nseq. This implies that the
optimal γ depends on Nseq. The curves had a peak at
γ = 0.05 for higher sequences (5 ≤ Nseq ≤ 15) while it
had a peak at γ = 0.1 for lower sequences (1 ≤ Nseq ≤ 4).
As for Nseq = 15, the classification accuracy was constantly
high when 0 ≤ γ < 0.1 but no big improvement was
seen compared to the ensemble un-regularized LDA classifier
(γ = 0). Thus the regularized LDA was beneficial especially
for the small number of sequences Nseq.

The performance improvement by the regularized LDA
classifier for P300-based BCI was first reported by Blankerz
et al. [12]. They reduced the training data and showed that
the regularized LDA classifier achieved a better performance.
In this study the performance improvement by the regularized
LDA classifier was also confirmed in the ensemble method
when a small number of training data were given.

Applying the dimension reduction methods for ensemble
LDA classifiers can also be considered as a solution for
the shortage of training data. In this study we applied PCA
together with the regularized LDA classifier. However, the

classification performance of that at γ = 0 did not show
better performances. The result implies that applying PCA in
itself does not improve the classification performance enough
when a small number of training data were given. Thus we
considered that the regularization of LDA in addition to the
dimension reduction is inevitable for the ensemble classifier
to be more practical.

In the present study, we employed PCA method for the
dimension reduction, but many other dimension reduction
methods might also improve the classification performance.
In the future research, the stepwise method and the other
dimension reduction methods will be applied to the ensemble
regularized LDA classifier to achieve better classification
performance.

V. CONCLUSIONS

We evaluated the ensemble regularized LDA classifier
when a small number of training data were given. As a result,
the ensemble regularized LDA classifier showed a signifi-
cantly better performance than the ensemble un-regularized
conventional LDA classifier. In the future, extended algo-
rithms such as ensemble regularized SWLDA classifier will
be evaluated toward better classification performance.
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