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Abstract— Hand motion classification using surface elec-
tromyography (sEMG) has been widely studied for its ap-
plications in upper-limb prosthesis and human-machine in-
terface etc. Pattern-recognition based control methods have
many advantages, and the reported classification accuracy can
meet the requirements of practical applications. However, the
pattern instability of sEMG in actual use limited their real
implementations, and limb position variations may be one of
the potential factors.

In this paper, we give a pilot study of the reverse effect of
forearm rotations on hand motion classification, and the results
show that the forearm rotations can substantially degrade the
classifier’s performance: the average intra-position error is only
2.4%, but the average interposition classification error is as high
as 44.0%.

To solve this problem, we use an extra accelerometer to
estimate the forearm rotation angles, and the best combination
of sEMG data and accelerometer outputs can reduce the
average classification error to 3.3%.

I. INTRODUCTION

Surface electromyography (sEMG) has been widely used
in power prosthetic control for decades [1], and also been
used as a new type of human-machine interface these years
[2]. However, present applications of sEMG can only control
a limited number of degrees of freedom (DOFs), and pattern-
recognition based methods are promising to produce natural
and multiple DOFs control for users [1].

Most of the present researches about sEMG classification
focused on various techniques of preprocessing, feature ex-
traction, and different kinds of classifiers to reach higher
classification accuracies [3]–[6]. The up-to-date classifiers
can achieve an accuracy as high as 98% [7], which can fully
meet the needs of practical applications. However, there are
few successful commercial use of pattern-recognition based
myoelectric prosthesis because of the pattern instability in
actual use [1]. The nonideal conditions in clinical implemen-
tations may lead to inconsistencies with the reported classi-
fication accuracy under controlled conditions. To bridge the
gap between research and clinical practice, some researchers
began to investigate the potential causes and solutions of
failed use of pattern-recognition control method [8]–[11].

E. Scheme et al. [9] first studied the reverse effects of limb
position on pattern recognition based myoelectric control,
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and the results showed that, limb position variations in sEMG
training and testing led to a substantial decrease of the
classification accuracy. In this paper, they considered 8 limb
positions and the mean interposition error was as high as
35.0%, while the mean intra-position classification error was
only 6.9%. To resolve the limb position effects in myoelectric
pattern recognition, Anders Fougner et al. [10] added two
accelerometers which were placed on the forearm and upper
arm respectively, and reduced the average classification error
from 18% to 5%.

However, the above researches only considered the large
motions of the upper body or the whole upper limb, such as
torso horizontal [9], straight arm hanging straight, straight
arm reaching up 45◦ [10] etc. Actually, most of the hand
motions are controlled by small and closely spaced muscles
on the forearm, and the sEMG pattern changes caused by
the forearm movements may be the most contributions to
the large classification errors.

Typical forearm rotations like pronation and supination
are commonly used in daily life, which can change the palm
orientation when the hands perform different motions. Some
researchers considered the forearm supination and pronation
as two hand motions to design pattern classifiers [11]–[13].
Actually, forearm rotations turn the hands to rotate, and hand
motions (hand close, wrist flexion, etc.) can still perform as
the forearm rotates at different positions. For sEMG use,
when the forearm rotates, the related muscles also move,
and the relative shift between surface electrodes and target
muscles may change the sEMG patterns [13], [14], and
degrade pattern recognition performance.

In this paper, we conducted a pilot research focused on
the reverse effects caused by the forearm rotations. In order
to solve this problem, we used an accelerometer to sense the
forearm rotations, and a best combination of accelerometer
outputs and sEMG features was proved to be able to achieve
a robust and high classification accuracy system.

II. EXPERIMENT

A. Data Acquisition

The accelerometer outputs and sEMG data corresponding
to 7 classes of hand motions were collected from 6 healthy
subjects ( 5 male, 1 female; 24-28 years old).

Four pre-amplified sEMG sensors (part #243 by Noraxon)
were used to collect sEMG signals at four equally spaced
spots around the forearm. For each channel, two Ag/AgCl
electrodes were placed along the forearm, with a distance of
about 1.5cm between them and another reference electrode
was placed near the elbow. Besides, we chose a 3-axis analog
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accelerometer (ADXL335B by ADI) to record accelerations
on each axis, and fixed it on the back of the forearm with its
Z axis pointing above, and X axis along the forearm. Fig. 1
shows the configuration details.

Fig. 1. Placement of the accelerometer and electrodes.

All sEMG channels were pre-amplified 500 times and low-
pass filtered at 500Hz. The accelerometer was configured to
have a sensitivity of 300mV/g at a range of 3.6g, where g
represents the gravitational acceleration. Both the sEMG and
accelerometer outputs were recorded using a NI DAQ Card
(USB6211) at a sample rate of 2kHz.

In order to study the influences of forearm rotations on
hand motion classification, we selected 3 typical forearm
rotary positions: supination, pronation and a neutral rotation
of 90◦ as illustrated in Fig. 2.

 

P1 P3 

P2 

Pronation Supination 

Fig. 2. Forearm rotary positions.

Seven classes of representative hand motions (C1-C7)
were selected as shown in the Fig.3.

     
C 1      C 2   C 3    C 4                C 5   C 6            C 7 

  Fig. 3. Hand motion classes. (C1: Hand close C2: Hand open C3: Wrist
extension C4: Wrist flexion C5: Ulnar deviation C6: Radial deviation C7:
Hand at rest)

Under each forearm position, the subjects performed 7
classes of hand motions. Each motion was repeated 10 times,
during which each contraction was sustained for 3 seconds
and then rested for 3 seconds before subsequent contractions
to avoid fatigue. During the experiment, the subjects sat at
the table, with elbows laid on the table to avoid the influences
of large body movements.

B. Feature Extraction and Preprocessing
Many sEMG features like time domain (TD) feature

[3], autoregressive (AR) coefficients [6], the wavelet packet
transform [7] have been widely studied in hand motion
classification. TD feature was adopted here for its simple
implementation and good performance in combined use with
most classifiers [15]. Four TD features (mean absolute value,
zero crossings, slope sign changes and waveform length) of
each channel were computed within a 200ms sliding window,
and 3 axis outputs of the accelerometer were simply averaged
for further use. Please refer to [3] for more details about TD
feature extraction.

The raw features usually need to be preprocessed before
classifier training, and 16 features of 4 channels were too
many for the following computation. Principal Component
Analysis (PCA) has been used in many papers and proved to
be effective in sEMG classification [12]. Using PCA, the raw
features are projected onto directions of principal compo-
nents, which have orders of their importance in classification,
and formed new features. On one hand, some features may
make little contribution to classification, and a lower feature
space dimension is necessary for embedded implementations.
On the other hand, the less important features may have some
relations with noises, and should be discarded to improve the
robustness of the system [12]. In our research, we use PCA to
reduce the features number from 16 to 11 without sacrificing
accuracy.

C. Classifier Design and Training Methods
Many modern classification methods like Linear Discrim-

inant Analysis (LDA), artificial neural networks, Gaussian
mixture models, and hidden Markov models have been
investigated in sEMG classifications, but there are no big
differences in their classification performances [16]. Among
all these classifiers, LDA is a very simple method to find a
linear combination of features which separates two or more
classes. In this experiment we chose LDA classifier as it was
widely used and has been proved to be suitable for sEMG
classification and work well with TD features [15].

In the experiment, we designed 3 different training modes:
1) Only sEMG samples were used and 3 LDA classifiers

was trained under each single forearm position. In
order to study the effects of forearm rotations on
classification, these 3 classifiers were then tested using
sEMG samples of all forearm positions.

2) A LDA classifier was trained and tested using all
sEMG samples of 3 forearm positions.

3) The accelerometer outputs were used for classification
in combination with sEMG TD features.

In mode (3), we first used the accelerometer outputs to
estimate the forearm rotary angles, and then used the angles
to train the classifier in mode (2) as an extra feature. This
method was different from the one used in paper [10],
where all the accelerometer outputs and sEMG features
were concatenated to form feature vectors. Our usage of the
accelerometer only added 1 feature, and less computation
than the latter method.
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The accelerometer can measure the linear accelerations on
each axis, while the components of gravitational field vector
g exist all the time. In the absence of linear accelerations or
the linear accelerations are negligible compared with grav-
itational acceleration like the situations in our experiment,
the accelerometer outputs are only the components of g on
the corresponding axis, which can be used to determine the
accelerometer rotary angles.

According to the principle of spatial transformation [17],
the coordinate representation of g in the accelerometer ref-
erence frame is: gx

gy
gz

 = Rx(ϕ)Ry(θ)Rz(ψ)

 0
0
1


=

 − sin θ
cos θ sinϕ
cos θ cosϕ

 (1)

The vector (0, 0, 1)T in (1) is the coordinate representation
of g in gravitational frame, and R is the rotation matrix of
each axis, with parameters of roll angle ϕ , pitch angle θ and
yaw angle ψ.

The orientation angles are dependent on the order in which
the rotations are applied, and we adopt the commonly used
aerospace sequence of yaw then pitch and finally a roll
rotation. In our experiment, the X axis was configured along
the forearm, so the forearm rotary angle is the roll angle ϕ.

It’s easy to calculate ϕ from (1):

ϕ = Atan2(gy, gz) (2)

where Atan2 is a four-quadrant inverse tangent function, and
the results of ϕ can vary between −180◦ and 180◦.

III. RESULTS

At first, only sEMG samples were used, and 3 different
classifiers were trained under 3 forearm rotatory position re-
spectively, but tested using sEMG samples from all positions.

The interposition errors are averaged across all subjects
and motions, and the results are shown in Fig.4. The vertical
axis denotes the different training positions and the horizon-
tal axis denotes the test positions. The entries in the main
diagonal represent the intra-position classification errors,
while the off-diagonal elements represent the interposition
errors.
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Fig. 4. Interposition classification errors (in %), averaged across all subjects
and motions.

The average intra-position classification error was 2.4%,
whereas the average interposition error was 44.0%. This large
classification performance degradation makes the commonly
used single-position training method failed to be used in
practical applications.

In order to decrease the inter-position errors caused by
forearm rotations, the forearm positions needed to be in-
cluded in the classification. Three methods were compared
in the experiment:

• A new classifier was trained using data from all forearm
positions, and the underlying position information in
the samples were expected to produce a good overall
performance.

• The estimated forearm rotation angle using accelerome-
ter outputs were used as an extra feature to train a LDA
classifier with sEMG data from all forearm positions.

• 3 accelerometer outputs were used directly with sEMG
samples of all positions to train a new classifier.

Figure5 depicts the classification of 7 classes using 3
methods and the errors are averaged across all subjects.

The average classification error using only sEMG data is
4.5%, and the average error using extended features of sEMG
and rotation angle is 3.3%, while the average error using
sEMG and 3 raw accelerometer outputs is 4.1%. This result
means the inter-position error is efficiently reduced by the
best combined use of sEMG and accelerometer. The average
classification errors of C1 are higher than other motions,
mostly because the subjects didn’t perform uniform strength
during different hand close contractions.
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Fig. 5. Classification error of each motion using different features averaged
across all subjects.

In the experiment, we also tried a two-stage classification
method like the one used in [10]. We first trained a forearm
position classifier using the the estimated angles, and then
selected the corresponding single-position trained sEMG
classifier. The result showed that, 3 forearm rotary positions
could be classified 100% using the accelerometer samples,
and we could achieve a lower classification error of 2.4%
as in the single-position conditions. However, this method
is not appropriate for practical use, where more than 3
forearm positions should be considered and more classifiers
are needed to be trained.
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IV. DISCUSSION

As the results show, LDA and TD features of 4 sEMG
channels worked well, and could reach an average accuracy
of 97.6% in 7 hand motion classifications. The supplement
of preprocessing techniques like PCA makes it easy to be
implemented in embedded systems.

The large interposition classification error caused by fore-
arm rotations reveals that the classifiers trained under a
special forearm position can hardly recognize the same hand
motion under a different forearm position. As referred in
the introduction, pattern-recognition based myoelectric hands
are less prevalent in practical applications just because the
pattern instability, and our results show that forearm rotation
may be one of the potential causes.

In clinical sEMG collection procedures, there are some
recommendations about the sEMG sensor location and ori-
entation on the muscle [18]. These recommendations are
expected to be good for getting stable signals, and decreasing
the risk of crosstalk. However, for sEMG hand motion
classification, relative movements of muscles and the sensors
during the experiment are inevitable, therefore a robust
sEMG post-processing is more important.

Actually, when we rotate the forearm, the related muscles
also rotate, while the electrodes placed on the skin of the
forearm move little, resulting in a relative shift of electrodes
and targeted muscles, which may cause the sEMG feature
space change. Some previous researches have proved that
relative shift may influence the classification results [13],
[14], and the situation in forearm rotations is more serious.
In this paper, we selected 3 typical forearm positions for the
comparison convenience, whereas more positions need to be
considered in actual use when collecting sEMG samples, and
it’s easy to record the forearm positions using accelerome-
ters. At the same time, multiple sEMG channels are needed,
which can guarantee collections of sEMG under different
forearm rotary positions.

Accelerometers have been widely used in body position
detection, like walking pattern analysis [19], hand gesture
recognition [20] and so on. However, accelerometer cannot
accurately sense the body position when an additional linear
acceleration exists. In clinical implementations of sEMG
classifications, inertial measurement unit (IMU) is a better
choice, which usually include a triaxial gyroscope, a triaxial
accelerometer, and a triaxial magnetometer [21].

Our experiment has proved the large influence of forearm
rotations on sEMG hand motion classification, and previous
researches like [9]–[11] revealed that large limb position
variations relative to the body matter as well. However,
these papers did not exclude the forearm rotations in their
experiments, which may be one of the biggest contributions
to the classification error. Therefore, in our future work, we
will compare the accurate contributions caused by forearm
rotations and large upper limb motions.
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