
  

 

Abstract— Time-frequency plots are widely applied to the 

non-stationary analysis of signals. These plots may be difficult 

to interpret, particularly when large data sets have to be 

considered. The aim of this work is to propose an automatic 

procedure of feature selection and clustering to be applied to 

time-frequency plots. We focus on the application of this 

procedure to plots obtained from a non-stationary analysis of 

the center-of-pressure signals acquired in upright bipedal 

stance.  
From a data set of 168 time-frequency plots we obtained 5 

different clusters, each characterized by a few distinctive 

features. We were able to interpret the results of the clustering 

relating them to the physiological mechanisms underlying 

postural sway. 

  

I. INTRODUCTION 

The study of non-stationary signals is often based on the 
analysis of time-frequency (TF) distributions. However, it is 
usually difficult to interpret TF-plots, especially in large data 
sets. In order to overcome the inherent complexity of large 
data sets, automatic methods of feature extraction and 
classification were developed in different fields, e.g. seizure 
detection in EEG signals [1-2], classification of myoelectric 
signals [3], and automatic speech recognition [4]. However, 
these studies are focused on the detection of ‘already known’ 
characteristics. Our perspective is different, since we are 
interested not only in developing a method able to 
automatically recognize specific features, but also to extract 
information without any a priori knowledge. 

The non-stationary problem we are interested in arose 
from the study of the Center-of-Pressure (COP) signal in 
human bipedal quiet stance [5-7]. Recently we proposed the 
‘rotary spectra analysis’ to demonstrate the presence of 
rotational components in the COP signal [8-9]. This allowed 
us to decompose the COP motion in the plane into its 
clockwise (CW) and counter-clockwise (CCW) rotational 
components. Both components showed a marginal spectrum 
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band in the range of 0-1.5 rounds per second (rps), with the 
highest peaks within the range 0.1-0.2 rps. We hypothesized 
that these peaks could be related to bursts of the muscle 
sympathetic nerve activity [9], as the latter is known to 
modulate postural sway [10]. Furthermore, it is known from 
the literature that respiration has a considerable impact on 
the maintenance of equilibrium [11], possibly explaining the 
component around 0.3 rps found in the rotary spectra 
analysis of the COP signal. However, our previous analysis 
did not considered the non-stationary characteristics of the 
COP signal. 

Examining these characteristic frequencies in the TF 
domain allows assessing their onset/offset time and duration. 
This may help to understand the physiological mechanisms 
under postural control in upright stance. To the best of our 
knowledge, no previous work in literature has ever described 
this kind of TF-plot. 

From the TF analysis of the COP rotational components 
on a sample of healthy subjects we obtained a large data set 
of TF-plots. We describe a method for their automatic 
clustering to find similarities and dissimilarities among them. 
The aim of this work is to illustrate how the interpretation of 
this clustering may lead to the discovery of new knowledge. 

II. MATERIAL AND METHODS 

 We describe a two-step procedure based on (a) automatic 

feature extraction, (b) clustering of TF-plots. We applied this 

procedure to a large data set of TF-plots obtained from the 

non-stationary rotary spectra analysis of a sample of healthy 

subjects. 

A. Subjects and Experimental Set-up 

We recruited 42 healthy volunteers and asked them to 
stand quietly, with their arms at their sides, on a force 
platform (Kistler 9286A, Switzerland). They were tested in 
two randomized conditions, with their eyes open (OE) and 
with their eyes closed (CE). All participants gave their 
written informed consent to be included in the study. 

Each acquisition lasted 60 s. The signal was recorded 
with a sampling frequency of 2 kHz and down-sampled to 20 
Hz. 

B. Signal processing 

We obtained the CW and CCW rotational components of 
the COP signal as described in [8-9], extending the rotary 
spectra analysis to the time-frequency domain. Specifically, 
for each component, we calculated the Choi-Williams 

distribution, with a kernel  = 0.5 [12]. A representative TF-
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plot is shown by Fig. 1. The TF distribution amplitudes are 
normalized with respect to their maximum value. 

 COP rotational components in the TF domain can be 
considered as multi-component separable signals, as their 
components are clearly separated in the TF domain, 
according to the definition proposed by Rankine et al. in 
[13]. This means that, generally speaking, a certain 
component does not shift with time toward a different 
frequency value (like a “chirp” signal does), but rather it is 
(discontinuously) present at a specific frequency value. 

C. Data set 

For each of the 42 subjects, we considered 2 test 
conditions (EO and EC), and obtained 2 rotary components 
(CW and CCW) for each condition. Hence we collected a 
total of 168 TF-plots.  

D. Feature Extraction  

In order to describe a TF-plot in terms of its frequency 
components, it is necessary, as a first step, to automatically 
identify these components. The method we applied, similar 
to the one proposed in [13], is based on “region growing” 
[14], an image processing technique for obtaining 
segmentation. The first step in this technique is to select a set 
of ‘seed points’. Setting a first threshold on the amplitude, n 
seed points are determined. At the exact location of each 
seed, a region starts to grow from it. The regions are grown 
from the seed points adding to each region the adjacent 
pixels, until the amplitude is lower than a second threshold. 
Both amplitude thresholds are suitably chosen considering 
the histogram of the pixels amplitudes. Segmenting each TF-
plot, we can automatically determine their frequency, 
amplitude and temporal duration. 

The second step is the definition of a set of features. We 
divided the TF-plane in 3 different frequency bands: from 0 
to 0.2 rps, from 0.21 rps to 0.3 rps, and from 0.31 to 0.5 rps. 
In each band, we evaluated how many frequency components 
are present, their temporal duration and their energy. The 
duration of the frequency components was divided in 3 

classes, “short”, if shorter than 30 s, “medium” if longer than 
30 s and shorter than 50 s, and “long” if present for at least 
50 s. Similarly, the energy of the component is “low”, 
“medium”, or “high” if it contains less than 30%, between 
30% and 60%, or more than 60% of the total energy of the 
TF distribution.  

It is important to notice that the energy of each 
component is expressed as a percentage of the total energy of 
the TF distribution. In this way, the information relating to 
the energy absolute value is discarded, as we are interested in 
the frequency components, and not in its absolute amplitude. 
This means that we do not include features that are known (a 
priori) to distinguish between EO and EC conditions, like the 
COP spectrum power. 

Therefore, we defined 27 different features, summarized 
in table 1. 

TABLE I.  LIST OF FEATURES 

Frequency Amplitude Time duration Feature 

0 < f < 0.2 rps 

High 

amplitude 

t≥50 s F1 

30 ≤ t <50 s F2 

t < 30 s F3 

Medium 

amplitude 

t≥50 s F4 

30 ≤ t <50 s F5 

t < 30 s F6 

Low amplitude 

t≥50 s F7 

30 ≤ t <50 s F8 

t < 30 s F9 

0.2 ≤ f < 0.5 rps 

High 

amplitude 

t≥50 s F10 

30 ≤ t <50 s F11 

t < 30 s F12 

Medium 

amplitude 

t≥50 s F13 

30 ≤ t <50 s F14 

t < 30 s F15 

Low amplitude 

t≥50 s F16 

30 ≤ t <50 s F17 

t < 30 s F18 

f  0.5 rps 

High 

amplitude 

t≥50 s F19 

30 ≤ t <50 s F20 

t < 30 s F21 

Medium 

amplitude 

t≥50 s F22 

30 ≤ t <50 s F23 

t < 30 s F24 

Low amplitude 

t≥50 s F25 

30 ≤ t <50 s F26 

t < 30 s F27 

 

E. Clustering 

Clustering is based on the k-means algorithm [15]. One 
of the difficulties of k-means is the necessity to define a 
priori the number of clusters.  As we did not have sufficient 
information to perform this choice, we applied the Iterative 
Self-Organizing Data Analysis Technique (ISODATA) [16]. 
ISODATA is an unsupervised algorithm of clustering that  
iteratively performs a k-means clustering, then it splits every 
cluster whose samples are sufficiently dissimilar and merges 
any two clusters which are sufficiently close. The procedure 

Figure 1. Example of a TF-plot. 
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ends when the cluster centers stop changing or when a 
maximum numbers of iterations is reached. 

We implemented the feature extraction and the clustering 
algorithm on the described data set. 

III. RESULTS 

Applying feature extraction and clustering to the whole 
set of 168 TF-plots, we obtained 5 groups. The first group 
contains 15 plots, the second 57 plots, the third 33 plots, the 
fourth 27 plots, and the fifth 36 plots. Fig. 2 shows how the 
features (columns) are distributed in the 5 groups (rows). 
Squares are black-colored when a feature is present in at 
least 60 % of the group elements.  

Each group has a few features which discriminate it from 
the others. Since  these “main features” are never common to 
different groups, they can be considered as representative of 
the characteristics of the group. The first group shows a high 
prevalence of features F5 and F18. The second group is 
represented by features F1. The third group is characterized 
by feature F3. The fourth group is characterized by feature 
F4. The last group is characterized by features F6, and F15. 
There are no groups represented by features ranging from 
F19 to F27, i.e. from frequency components higher than 0.5 
rps.  

IV. DISCUSSION 

We defined 27 features to describe each TF-plot in terms 
of its frequency components. These features were formulated 
to help us understanding the physiological meaning 
underneath the detected frequency components. Clustering 
the 168 TF-plots obtained from the sample of healthy 
subjects, we found 5 well separated groups. Each of them 
was characterized by 1 or 2 features, never overlapping with 
those of the other groups. Hence, we can consider these 
features as the main characteristics of each group. This 
means that we were able to identify 5 ‘templates’, i.e. 5 
different typologies of recurrent types of behavior pertaining 
the frequency components’ characteristics.  

All of the 5 groups were characterized by a low 
frequency component (f < 0.2 rps). This component may 
have different time durations (short, medium or long) and/or 
amplitudes (medium or high), but it is always present. This 
result is in accordance with our previous hypothesis that 

human postural sway is influenced by the bursts of muscle 
sympathetic nerve activity [8, 9]. In group 2 (which is the 
most populated) and in group 3, the low-frequency 
component shows a high amplitude. However, in group 2 this 
component can be considered continuous in time, while in 
group 3 it is present only in short bursts. This ‘dissimilarity’ 
in the time duration could distinguish two different patterns 
of activation of the muscle sympathetic nerve. In groups 1, 4 
and 5 the low-frequency component shows a medium 
amplitude, with short bursts in group 5, and medium and 
long bursts in group 1 and 4, respectively. Furthermore, 
groups 1 and 5 show an additional feature of short duration 
in the frequency range 0.2 ≤ f < 0.5 rps. This has low 
amplitude in group 1 and medium amplitude in group 5.  

Hence, all the groups seems to be characterized by the 
activity of the sympathetic nervous system. Only two groups 
show an influence of the parasympathetic activity 
(respiration) for periods of time shorter than 30 s. 

A posteriori we verified that each group included almost 
the same number of TF-plots referring to OE and CE 
conditions, and CW/CCW rotational components, i.e. they 
are evenly distributed. This is not surprising, since we didn’t 
find any spectral difference between the CW and CCW 
rotary components of healthy subjects [9]. Furthermore, in 
our description we considered the energy of each component 
as a percentage of the total energy, discarding the 
information about its absolute value. This means that we did 
not expect (a priori) to see any difference between OE and 
CE conditions, since it is known that they mainly differ for 
the power of the spectrum density of the corresponding 
signals [17-18].  

V. CONCLUSION 

We developed an automatic method to analyze and 

classify the time-frequency distributions of the COP 

rotational components and demonstrated its applicability to a 

data set gathered on healthy volunteers. This automatic 

method allowed us to analyze similarities and dissimilarities 

of a high number of TF-plots, rapidly and in a repeatable 

way. Moreover, we were able to interpret the results of the 

clustering and to relate them to physiological elements. This 

demonstrates that the method could be used both to classify 

TF-plots and for knowledge discovery. 

Figure 2. Results of the clustering algorithm applied to the data set. Each row represents a group, each column represents a feature. Squares 

are black-colored when a feature is present in at least 60 % of the group elements. The number of TF-plots clustered in each group is 

reported on the right side of the graph. 
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Due to its characteristics the method can be easily adapted 

to analyze other typologies of TF-plots. 
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