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Abstract— Assessment of daily physical activity
using data from wearable sensors has recently become
a prominent research area in the biomedical enginee-
ring field and a substantial application for pattern re-
cognition. In this paper, we present an accelerometer-
based activity recognition scheme on the basis of a
hierarchical structured classifier. A first step consists
of distinguishing static activities from dynamic ones
in order to extract relevant features for each activity
type. Next, a separate classifier is applied to detect
more specific activities of the same type. On top of
our activity recognition system, we introduce a novel
approach to take into account the temporal coherence
of activities. Inter-activity transition information is
modeled by a directed graph Markov chain. Confi-
dence measures in activity classes are then evaluated
from conventional classifier’s outputs and coupled
with the graph to reinforce activity estimation. Ac-
curate results and significant improvement of activity
detection are obtained when applying our system for
the recognition of 9 activities for 48 subjects.

I. INTRODUCTION
Over recent years, there has been a significant research

effort focusing on the assessment and classification of
physical activities (PA) [1]. This has been driven by
its importance for numerous health-related applications.
The need for such applications has grown in response
to studies that identified strong links between levels of
PA and diseases as cardiovascular disease, hypertension,
diabetes and certain cancer types and also the important
role of PA in reducing obesity risk [2]. Although nu-
merous studies employed computer vision-based systems
for activity recognition, the use of wearable sensors as
accelerometers showed promising advantages.

In previous research, machine learning approaches
have been shown to be efficacious for recognizing a
variety of activities from wearable sensors [1], [3]. The
approaches principally utilize a two stage process [4]. A
first step consists of evaluating representative features of
the acceleration data over sliding windows. A classifier is
then applied on the extracted features to associate each
data window with an activity. Numerous classifiers have
been used for this purpose. They included generative
classifiers such as Gaussian mixture models (GMM) [5],
a range of discriminative classifiers such as k-nearest
neighbors (k-NN), support vector machines (SVM), and
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decision trees (DT) ([1], [4]), and ensembles of classifiers
as AdaBoost (AdaB) and random forests (RF) ([6], [7]).

Discriminative classifiers distinguish between activities
by directly learning decision boundaries in the feature
space [8]. Whereas generative ones first create models
to describe how features for each activity have been
generated before inferring the boundaries to discriminate
among activities. The authors in [8] have shown that
discriminative classifiers usually outperform generative
ones for classification tasks which justifies previous re-
sults obtained for activity classification [1], [6].

Nevertheless, the majority of discriminative classifiers
are instance based that assume implicitly that the data
measured from sensors comes from a time-independent
sequence of activities. In real life, this assumption is not
valid and activities performed in the same time range
are sequentially correlated. Few approaches searched to
consider these temporal dependencies of activities.

In [3], Mathie et al. performed classification of a
predefined sequence of activities using decision trees
and aposteriorily applied to the classification results a
set of predefined rules to refine the estimated activity
sequences. Taking advantage of the capacity of some
generative classifiers as hidden Markov models (HMMs)
to incorporate temporal information on how features and
activities transition over time, recent work [6] applied
a hybrid approach combining discriminative and gene-
rative classifiers. The authors reported 4% of increased
accuracy compared to results of the discriminative classi-
fier alone (AdaB with Decision Stumps). A big limitation
of this approach is that its computational complexity
can be very high. An HMM per activity is trained
using posterior probabilities. Classification is then done
over windows choosing the activity for which the HMM
maximizes the likelihood over the windows. Computation
complexity can also be increased if the number of states
in HMMs and the window’s length are to be optimized.

In this paper a novel less computationally expensive
approach called graph method is presented to consider
temporal coherence of activities. In this approach, the
classifier is not used to make decisions but only to
give confidence measures in the belonging of data to
activity classes. These measures are then combined with
the temporal dependencies of activities modeled by a
directed graph Markov chain to refine recognition results.
The instance based classification that we use is based on
a hierarchical structure. The whole classification system
will be evaluated using several classifiers and compared
with state of the art methods.
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Fig. 1. Block diagram describing the classification system presented in this paper. (a) Instance based classification. (b) Graph method
incorporating temporal dependencies to classification results.

II. framework for activity classification
Our classification system aims at classifying 9 activi-

ties (lying down, slouching, standing, stamping, cycling,
running, slow/fast walking, and using stairs) using data
from hip-worn accelerometer. The classification system is
characterized by 2 main parts (Fig. 1) : (a) Instance ba-
sed classification and (b) Incorporation of inter-activity
temporal dependencies in the recognition. Instance ba-
sed classification part has the hierarchical configuration
of a one-node binary tree where leaves themselves are
classifiers. At the first level, a binary classification of
activities is applied to differentiate between two activity
types where an activity is classified as static (posture) or
dynamic. The next stage consists of applying a separate
classifier for each type to perform more detailed acti-
vity classification. The split between static and dynamic
activities permits the extraction of more relevant set
of features for each activity type. It also leads to less
classification confusion since reduced number of activities
is presented to each of the second stage classifiers.

A. Preprocessing techniques
Before classifying the acceleration data, some prepro-

cessing methods were applied. The acceleration signals
were first median filtered to remove noisy spikes. The
resulting signals were then high and low pass filtered at
a cutoff frequency of 0.1 Hz. Applying the high pass filter
attempts to remove the static component of the accelera-
tion signal which basically captures postural information
concerning the body inclination with respect to the
ground. Low pass filtering has an opposite effect which
is eliminating the information related to dynamic motion
to conserve only information about static activities.

B. Feature computation and classification of data
Time and frequency domain features were evaluated

over 2 seconds sequential sliding windows with an overlap
of 1 second. This kind of features has already shown
advantage over time-frequency features such as wavelets
for the recognition of activities [9]. The use of 2 seconds
windows was inspired from previous research that found
them sufficient for recognizing a wide range of activities
[10]. The 50% overlap between consecutive windows has
also been proven efficient for activity recognition [1].

The distinction between posture and activity was done

using a normalized Signal Magnitude Area (SMA) va-
lue over windows of the high-pass filtered acceleration
data. The SMA value is the sum of the moduli of the
3 acceleration values. If this value is higher than a
certain threshold then the subject is considered invol-
ved in dynamic activity else a static phase is detected.
The threshold is estimated from the annotated database
using 1-fold cross validation and chosen to be the value
maximizing classification accuracy between dynamic and
static activities. For static activities, 14 features were
evaluated from the low-pass filtered acceleration data.
These features included the average mean values, tem-
poral energy, average of L-1 norm of acceleration vector,
sensor’s tilt angle from ground, area under the curve and
mean distances between axis. As for dynamic activities,
18 features were extracted from high-pass filtered accele-
ration data. These features comprised median frequencies
of the 3 axis, entropy, mean-cross rate, peak-to-peak
distances, mutual correlation between axis, and spectral
energy. Most of these features have already demonstrated
success in activity recognition [1], [9].

III. Graph method for temporal coherence
Physical activities naturally present coherence in time.

For instance, it seems unlikely that a person lies down
straight after running, but is more likely to be engaged
in a walking phase or standing. Similarly, people do not
abruptly alternate between activities but rather tend to
perform the same activity over long periods of time. Des-
pite these correlations, classifications are usually done
over sliding windows that are supposed independent of
each other which leads to many spurious classifications.
The graph method attempts to remedy these time inde-
pendence assumptions by coupling, in an overall decision
technique, information about the inter-activity transitio-
nal behavior with confidence measures in the belonging of
data windows to each of the activities. The activities are
modeled using a directed graph described by a Markov
chain and are therefore completely characterized by the
initial probabilities p (A1 = i) (i = 1, 2, . . . , N), and the
transition probability distribution p (Am = j|Am−1 = i).
Here, N is the total number of activities and Am is the
performed activity at instant m indexed from 1 to N .

The distribution of the transition probabilities between
activities can be directly estimated from training data.
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p (Am = j|Am−1 = i) is thus taken to be the number of
transitions from activity i to activity j divided by the
total number of transitions from activity i. This leads
to high probability values for most likely transitions
and lower probabilities for those that are less likely to
happen. In real life, the activity by which people start is
unpredictable. For this reason we choose an equiprobable
distribution for initial probabilities. Given a sequence of
feature vectors to classify {Fm}1≤m≤M , incorporating
temporal dependencies into classifier’s decisions is done
by estimating the performed activities as follows :

Â1:M = arg max
A1:M

p(A1)
M∏

m=2
p(Am|Am−1)

M∏
m=1

φ(Fm|Am)

This optimization problem is solved using Viterbi algo-
rithm. φ(Fm|Am) represents the confidence measures for
the belonging of Fm to the different activities. In other
words, φ(Fm|Am = i) stands for the level of confidence
that the classifier has in associating Fm with activity i. In
the above equation we can see that the temporal depen-
dencies modeled in the graph regularize the decisions ta-
ken by the classifier. Estimated activities represent thus
the most likely sequence of activities taking into account,
at a time, the temporal coherence of activities and the
classifier’s confidence in its decisions. We evaluate the
confidence measures from the soft outputs of the classifier
using appropriate functional mappings. Due to lack of
space, the evaluation of these measures for the applied
classifiers will be briefly explained in Section V.

IV. Data Collection
Acceleration data was collected using a Motion

PODTM (MOVEA) with a built-in triaxial accelerometer
sensor. The monitor sensor was placed at the hip level
and used to collect, at a rate of 100 Hz, acceleration data
of 48 subjects free of any chronic diseases and including
26 men and 22 women of age range varying between 19
and 55 (mean ± SD = 36 ± 11 y). About 55 minutes
of acceleration data were collected for each subject and
during which subjects performed activities of various
intensities as naturally as they do in their everyday life.
During data collection, a supervising medical team took
charge of labeling the principal performed activities by
each subject. Nine activities that mainly constitute the
most practiced activities in everyday life were searched
to be recognized. Among these activities, 3 are postures
or static activities (lying down, slouching/sitting, and
standing) and the other 6 activities correspond to motion
or dynamic activities (stamping, cycling, running, slow
walking, fast walking, and using stairs).

V. Recognition results
Instance based classification and classifications taking

into account the temporal coherence of activities were
applied using 7 different classifiers (DT, RF, SVM, k-
NN, GMM, AdaBoost with decision stumps, and Ada-
boost with decision trees). To evaluate the 9-activity

classification accuracy for each of the classifiers, a leave-
one-subject-out validation technique was applied. The
method applying HMMs to take into account the tempo-
ral continuity was extended and adapted to each of the
employed classifiers for comparison. One HMM is learned
for each activity using probabilistic outputs of instance
based classifiers. The same activity is then assumed to
be practiced over fixed length windows or sub-sequences
of the final estimated activity sequence. Therefore, the
activity for which the HMM maximizes the likelihood
over these windows of pre-specified length is estimated.
Using Gaussian mixture models with 2 components as
observation probabilities for HMM hidden states, we test
this method for different number of states per HMM (2,
3, and 4 states) and also for windows of variable lengths
(5, 10, 15, and 20 s). For each classifier, the combination
giving best results is considered.

For the AdaBoost classifiers, the classification margins
which correspond to the weighted ratio of votes given
by the weak classifiers to each of the activities are used
to estimate the confidence measures in these activities.
This is done by applying parametrized sigmoid functions
to these margins. The parameters of the sigmoid func-
tions are learned from the training data. Similar sigmoid
functions were used to map the SVM classifier’s output
to confidence measures [11]. Concerning random forest
classifier, the fractions of votes given by the learned
trees to each of the activities are used as the confidence
measures (50 trees). For the k-NN classifier, the pro-
portion of nearest neighbors belonging to each of the
considered activities are evaluated. These proportions
are further weighted with the inverse of the distance
from nearest neighbors to the considered data point to
obtain the confidence measures. For decision trees, in
order to estimate the confidence in the belonging of
a data point to the different activities, the classifying
node is considered. Confidence measures are obtained by
evaluating the fraction of training data arriving to this
classifying node and belonging to each of the activities.
Finally, applying Bayes rule for the results of the GMM
classifier permits us to obtain for this classifier confidence
measures in each of the activities.

Table I reports the classification results of the different
applied methods for the classification of activities. From

TABLE I
Summary of classifiers’ results (Mean Accuracy ± SD)

Applied Method
Instance based with HMM with graph

C
la

ss
ifi

er

DT 77.8 ± 7.3 83.9 ± 8 86.7 ± 6.6
RF 81 ± 7.1 86.5 ± 6.5 89 ± 5.8

SVM 76 ± 7.1 83 ± 7.4 87.1 ± 7.5
k-NN 76.7 ± 6.9 83.8 ± 7.3 86 ± 7.2
GMM 73.9 ± 8.7 76.6 ± 9.3 80.2 ± 9

AdaB(DS) 77.4 ± 8.2 81.1 ± 7 83.7 ± 6.8
AdaB(DT) 74.1 ± 7.9 81.6 ± 9.6 84.5 ± 10
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TABLE II
Confusion matrix : Random Forest classifier with graph using leave-one-subject-out validation for 48 subjects.

Precision = 89 % Detected Activity
Recall = 88.4 % Lying Slouching Standing Stamping Cycling Running Slow Walking Fast Walking Stairs

L
ab

el
ed

A
ct

iv
it

y Lying 92.4 3.3 0 4.2 0.1 0 0 0 0
Slouching 3.5 88.5 4.5 3.3 0.2 0 0 0 0
Standing 0.2 2.6 93.2 3.8 0 0 0 0 0
Stamping 0 0 1 80.1 7.9 0 9.8 0.4 0.8
Cycling 0 0 0.3 0.9 98.5 0 0.3 0 0
Running 0 0 0 0.1 0.3 94.2 0.1 0.1 5.2

Slow Walking 0 0 0.2 6.2 3.1 0 76 12.5 2
Fast Walking 0 0 0 0.2 1.3 0 14.2 77.8 6.5

Stairs 0 0 0.8 1.2 0 0.8 2.2 2.4 92.6

this table, we can notice the superiority in performance
of discriminative classifiers with respect to the generative
one (GMM). As can also be seen from this table, taking
into account the temporal dependencies between acti-
vities improves significantly the classification accuracy
results. This improvement ranges between 4 to 11%
depending on the employed classifier and the used me-
thod for considering these temporal dependencies. Even
though simpler for implementation and much less com-
putationally expensive, the graph method outperforms
the method that uses HMMs for all tested classifiers.
The better performance of the graph method is basically
due to the fact that the method using HMMs fails very
frequently to correctly classify windows over which the
conventional classifiers gave multiple erroneous activity
estimations. Overall, the best recognition results were
reported for the random forest classifier combined with
the graph method where an average recognition accuracy
of 89% was obtained for the nine activities.

The aggregate confusion matrix showing individual
recognition rates for activities is given in Table II. The
slight confusions between the static and dynamic acti-
vities is due to classification errors done by the first
step classifier. The majority of static activities that were
confused with dynamic ones were classified by the dyna-
mic classifier as stamping. This makes sense since stam-
ping is much closer to static activities than any other
studied dynamic activity. The most significant confusion
happens to be between slow walking and fast walking.
This confusion is quietly expected due to similarities in
motion patterns that these 2 activities share when the
sensor is placed on the hip. Moreover, these activities
are subject-dependent in the sense that the execution of
these activities can significantly differ from one person
to another. Using stairs is confused in almost 2.5% of
cases with each of slow walking and fast walking activities
which is due to similarities in the acceleration data that
correspond to these activities. It is important to note
that more important confusion between these 2 activities
was obtained with classifiers other than random forest.

VI. Conclusion
In this paper, we presented a systematic approach

for recognizing physical activities from a hip-mounted

acceleration data. Activity recognition was refined by
combining confidence measures evaluated from the ins-
tance based classifier soft outputs with the temporal
coherence of activities modeled by a graph. The instance
based classifier was designed hierarchically so as to preli-
minarily distinguish between postures and motion. These
latter were subsequently processed to separate classifiers
for more specific classification of the performed activities.
For the recognition of 9 physical activities, the whole
classification system was applied using several classifiers
over a data set containing 48 subjects. Obtained results
showed the proposed classification approach to outper-
form other methods, confirming its effectiveness in detec-
ting and discriminating among the different activities.
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