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Abstract— Pain is a highly subjective experience, and the 

availability of an objective assessment of pain perception would 

be of great importance for both basic and clinical applications. 

The objective of the present study is to develop a novel approach 

to extract pain-related features from single-trial laser-evoked 

potentials (LEPs) for classification of pain perception. The 

single-trial LEP feature extraction approach combines a spatial 

filtering using common spatial pattern (CSP) and a multiple 

linear regression (MLR). The CSP method is effective in 

separating laser-evoked EEG response from ongoing EEG 

activity, while MLR is capable of automatically estimating the 

amplitudes and latencies of N2 and P2 from single-trial LEP 

waveforms. The extracted single-trial LEP features are used in a 

Naïve Bayes classifier to classify different levels of pain 

perceived by the subjects. The experimental results show that 

the proposed single-trial LEP feature extraction approach can 

effectively extract pain-related LEP features for achieving high 

classification accuracy. 

I. INTRODUCTION 

Pain is an unpleasant multidimensional experience 
associated with real or potential tissue damage [1]. Therefore, 
pain experience does not simply reflect sensory information 
but can be substantially influenced by various 
psycho-physiological factors. Since pain is a subjective 
first-person experience (IASP definition), self-report (e.g., 
Visual Analogue Scales [VAS]) is the gold standard for the 
determination of the presence, absence, and intensity of pain 
in clinical practice [2]. While self-report of pain provides 
important clinical information for the adequate treatment of 
pain patients in most situations, it fails to be used in some 
vulnerable populations (e.g., patients with disorders of 
consciousness, including coma, vegetative state, and 
minimally conscious state) [3]. Lack or any inaccuracy of pain 
assessment can lead to inadequate or suboptimal treatment of 
pain in these vulnerable patients, which may lead to various 
additional clinical problems (e.g., psychological distress or 
depression, the development of chronic pain) [4,5]. Therefore, 
the availability of a physiology-based and quantitative 
assessment of pain that complements the self-report of pain 
would be of great importance in clinical applications. 

Nowadays, electroencephalographic (EEG) responses 
elicited by nociceptive laser heat pulses that selectively excite 
nociceptive free nerve endings in the epidermis [6] are widely 
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adopted to investigate the peripheral and central processing of 
nociceptive sensory input [7,8]. Such laser-evoked potentials 
(LEPs) are mediated by the activation of type-II Aδ 
mechano-heat nociceptors [9] and spinothalamic neurons in 
the anterolateral quadrant of the spinal cord [8] and currently 
represent the best available tool to assess the spinothalamic 
function in patients [10]. LEPs consist of several transient 
responses that are time locked and phase locked to the onset of 
laser stimuli. The largest LEP response consists in a biphasic 
negative-positive complex (N2 and P2 waves, peaking at 
approximately 200 and 350 ms when stimulating the hand 
dorsum), maximal at the scalp vertex [6], and largely 
reflecting the activity of the bilateral operculoinsular and 
anterior cingulate cortex [11]. The strong relationships 
between the N2 and P2 amplitudes in LEPs and the intensity 
of pain have been well characterized [12-15], which inspires 
us to explore the possibility of quantitative assessment of pain 
based on the single-trial LEP features (i.e., latencies and 
amplitudes of N2 and P2 waves). 

The aim of the present study was to predict the intensity of 
pain perception from single-trial LEP features. The key issue 
to be addressed is how to separate pain-related LEP features 
from ongoing EEG signals. In this study, a new single-trial 
LEP feature extraction and classification approach was 
developed to address the key issue involved. The proposed 
single-trial LEP feature extraction method combines common 
spatial pattern (CSP), which performs a spatial filtering to 
enhance the LEP waveforms, and multiple linear regression 
(MLR), which could automatically quantify the pain-related 
LEP features. Further, a Naïve Bayes classifier is used in two 
single-trial LEP classification problems: 1) to distinguish LEP 
from resting EEG, and 2) to predict different levels of pain 
perception. The experimental results show that the proposed 
single-trial LEP feature extraction and classification approach 
can achieve very high classification accuracy. 

II. METHODS 

A. Experiment setup 

Twenty-nine healthy participants (9 females and 20 males) 
aged 17-25 years (mean 22.2 ± 1.9), without a history of 
chronic pain, participated in the study. All participants gave 
written informed consent, and the local ethics committee 
approved the experimental procedures. 

Radiant-heat stimuli were generated by an infrared 
neodymium yttrium aluminium perovskite (Nd:YAP) laser 

with a wavelength of 1.34 m (Electronical Engineering, 
Italy). Laser pulses were directed at the dorsum of left hand on 
a squared area (5 x 5 cm) defined prior to the beginning of the 
experimental session. A He-Ne laser pointed to the area to be 
stimulated. The pulse duration was 4 ms, and four different 

Single-trial Laser-evoked Potentials Feature Extraction for 

Prediction of Pain Perception 

Gan Huang, Ping Xiao, Li Hu, Yeung Sam Hung and Zhiguo Zhang 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 4207



  

energies (E1: 2.5 J; E2: 3 J; E3: 3.5 J; E4: 4 J) of stimulation 
were used. After each stimulus, the laser beam target was 
shifted by approximately 1 cm in a random direction, to avoid 
nociceptor fatigue or sensitization. 

Ten laser pulses at each of the four stimulus energies 
(E1-E4) were delivered, in random order, for a total of 40 
pulses per participant. The inter-stimulus interval was ranged 
between 10 and 15 s. An auditory tone was delivered 3~6 s 
after the presentation of each laser pulse to remind the 
participants to rate the intensity of the painful sensation 
elicited by the laser stimulus, using a VAS ranging from 0 (no 
pain) to 10 (pain as bad as it could be). 

Participants were seated in a comfortable chair in a silent, 
temperature-controlled room. They wore protective goggles 
and were asked to focus their attention on the stimuli and relax 
their muscles. The EEG data were recorded using a 
64-channel Brain Products system (Brain Products GmbH, 
Munich, Germany; pass band: 0.01–100 Hz; sampling rate: 
1,000 Hz) using a standard EEG cap based on the extended 
10–20 system. The nose was used as the reference channel and 
electrooculographic signals were simultaneously recorded 
from eyelids and orbits.  

B. Feature selection 

As low-amplitude stimulus-evoked responses are embedded 
in a high amount of noise caused by background ongoing EEG 
and other non-cortical artifacts, the signal-to-noise ratio (SNR) 
of LEPs is very low. Across-trial averaging, which is the most 
widely used approach to increase the SNR of LEPs, is not 
suitable for the study of pain prediction because the pain 
intensity varies substantially from trial to trial. Here we 
describe a single-trial LEP detection and quantification 
approach to extract LEP features for pain prediction at the 
single-trial level. The proposed approach consists of four steps, 
(i) bandpass filtering (BPF), (ii) independent component 
analysis (ICA), (iii) common spatial pattern (CSP), and (iv) 
multiple linear regression (MLR). The Flowchart of this 
procedure is described in Fig. 1. The four EEG processing 
methods in the single-trial LEP detection approach will be 
detailed below. 

1) Bandpass filtering (BPF) 
Continuous EEG data were band-pass filtered between 1 

and 30 Hz because the laser-evoked EEG activity is mainly 
observed in this frequency range [16]. EEG trials are then 
extracted using an analysis window of 1,000 ms (500 ms 
pre-stimulus and 500 ms post-stimulus) and baseline 
corrected using the pre-stimulus interval. 

2) Independent component analysis (ICA) 
Next, EEG trials contaminated by eye-blinks and 

movements are corrected using the ICA algorithm [17-19]. In 
all datasets, these independent components have a large EOG 
channel contribution and a frontal scalp distribution is 
rejected and the remaining independent components are used 
to reconstruct EEG trials.  

3) Common spatial pattern (CSP) 
Although ICA, as a popular spatial filtering method, is 

effective in isolating EOG and EMG artifacts, its 
performance in finding components related to brain activity is 
still not satisfactory [20]. In the study, we applied another 

popular spatial filtering method, CSP, for separating 
laser-evoked EEG activity. The idea of CSP is to find a spatial 
filter such that the projected signals will have maximum 
differences in variance between two classes. CSP has been 
shown to be a powerful technique in brain-computer interface 
research to discriminate different mental intentions [21]. If 
the pre-stimulus and post-stimulus EEG waveforms are 
regarded as two classes and fed into CSP, the components 
with the maximum discriminative power between 
pre-stimulus and post-stimulus activities can be identified 
from two classes. The components extracted from the 
post-stimulus activity can be considered as the stimulus 
evoked components and will be used to reconstruct the 
stimulus evoked EEG activity. When applying CSP in 
detecting single-trial LEP waveforms, the procedures and 
algorithms can be described as below. First, pre-stimulus and 
post-stimulus EEG waveforms of the same data length form 
two classes, and the two classes of waveforms recorded over 
all channels from the same trial will generate two matrices 

TN 
 postpre , XX , where N is the number of channels and 

T is the number of samples per channel. CSP solves the 
following generalized eigenvalue problem 

  wXXwXX
TT

t preprepospost   ⑴ 

to find the generalized eigenvector or the projection vector 

w  to simultaneously minimalize the variance of 
preX  and 

maximize the variance of 
preX , where ⟨·⟩ is the averaging 

operator for trials in the same class and   is the generalized 

eigenvalue. The projection 
NN

N


 ],,[ 1 wwW  , where 

Nww ,,1   are the eigenvectors obtained from (1), is called 

as the spatial filter, 
NN 

 
1

WA  is called as the spatial 

pattern. In this study, three eigenvectors corresponding to the 
largest eigenvalues were selected for reconstruction of the 
EEG waveforms of all channels.  

4) Multiple linear regression (MLR) 
The combination of BPF, ICA, and CSP can effectively 

improve the SNR of single-trial LEPs, but the measurement of 
LEP latency and amplitudes require manual operation and has 
the risk of uncertainty caused by researchers or surgeons. For a 
more objective measurement, we apply a multiple linear 
regression method [22] to automatically estimate the 
amplitudes and latencies of N2 and P2 from single-trial LEP 
waveforms from Cz channel, which shows the maximum 
amplitude of N2-P2 complex in the time domain. Denote 

)(ty
N

 and )(ty
P  as the templates of N2 and P2 waves, which 

can generally be obtained as the averages of all trials of each 

participant, and )(tf  as the signal trial LEP waveforms that 

varies as a function of time t . The MLR method describes

)(tf  as the weighted sum of the shifted versions of averages 

of N2 and P2 as follows 

 ),()()(
PPPNNN

ltyaltyatf   ⑵ 

where N
a  and P

a  are the weights of N2 and P2 averages, and  

N
l and P

l  are the latency shift values of the N2 and P2 

templates, respectively. Since the N2 and P2 peaks of the 
LEPs reflect the activity of the different neural generators 
[11], and their amplitudes can be differentially modulated by 
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several experimental factors (e.g., spatial attention and 
probability of perception) [23,24], we model the N2 and P2 
waves separately, thus avoiding the assumption that all 
generators contributing to the LEP responses covary linearly 
[22]. By using the Taylor expansion, the MLR model can be 
written as 

,)(')()()(')(

)(')()(')()(

54321








tytyttyty

tyaltyatyaltyatf

PPNN

PPPPPNNNNN
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where )(' ty
N

 and )(' ty
P are the temporal derivatives of N2 

and P2 averages, respectively, and   is the residual term. 

Thus the single trial LEP waveform is approximated using the 
sum of the weighted averages of the N2 and P2 waves and 
their respective temporal derivatives. All the MLR 

coefficients ,
1

  ,
2

   , 
5

  are used as the features in the 

following classification. 

C. Pattern classification 

The Naïve Bayes classifier is applied for prediction of pain 

perception. With the assumption of conditional independence 

between the features given the class, the Naïve Bayes method 

can classify the sample as a member of a class with giving the 

highest probability score evaluated by its features. 

Leave one out cross validation (LOOCV) is used 

throughout the single-trial LEP feature extraction and 

classification. Suppose there are N LEP trials for one 

participant. The LOOCV is applied by using N-1 trials as the 

training set and the remaining one trial from the same 

participant as the test sample. This procedure will be repeated 

N times such that each trial for this individual has been used 

once as the test sample.  

It should be noted that the LOOCV strategy is applied not 

only for selecting tuning parameters of the classifier, but also 

for single-trial feature extraction. In each repetition, the CSP 

filtering is performed on the training set and the resulting 

spatial filter is applied to both training and testing trials to 

reconstruct single-trial LEP activity. For MLR analysis, the 

averages of N2 and P2 waves and their temporal derivatives 

are calculated from the training trials and used as a basis set in 

the MLR for both the training and testing trials. The MLR 

coefficients ,
1

  ,
2

   , 
5

  for both training and testing 

trials are used as the features for classification. 

III. RESULTS 

A.  Single-trial LEP Extraction 

Figure 1 describes the whole process of single-trial LEP 
analysis. Four steps are included in the procedure, which are 
BPF and ICA, CSP and MLR. Step by step, the LEP features, 
which decode the information of pain intensity, would be 
retained and enhanced, and the unwanted noise would be 
removed. 

To evaluate the denoising effect of each step in the 
proposed single trial LEP feature extraction approach, a 
similarity index (SMI), which is the power ratio between the 
“LEP-like” data in a testing trial and the residual, is defined. 

Let z  be the average of the training trials and 
k

z  be the kth 

testing trial. The SMI is calculated as 

 ,
)(

)(
log10

2

2

10 














R

P
SMI




  (4) 

where z
zz

zz
P

T

k

T

  is the orthogonal projection of 
k

z  on to z  

and PzR
k
  is the residual part. A large SMI means 

testing trial 
k

z  is more similar to the average z  (which 

assumed to be a clean LEP signal because noise is smoothed 
out by across-trial averaging), and vice versa. In Fig. 1, the 
value of SMI is gradually increased by the operation in each 
step. One-way ANOVA results indicate that the SMI has been 
significant improved by MLR (p<0.01). 

 

Figure 1.  Flowchart describing the procedure to enhance the SNR of 

single-trial LEP responses.  

Top panel: The EEG responses (A, both resting EEG and LEP responses, and 
for both training and test), measured at Cz, were band-pass filtered between 1 

and 30 Hz (step 1). In the training dataset, noise trials in the filtered EEG 

responses (B) were corrected using ICA algorithm (step 2), and the ICA 
corrected EEG responses (C) were spatial filtered using CSP algorithm (step 

3). The spatial filtered EEG responses (D) were further modeled using a 

MLR analysis (step 4). This procedure generated both single-trial EEG 

responses with enhanced SNR (E) and the corresponding filter models (ICA, 

CSP, and MLR models), which were applied on the testing data to 

significantly enhance the SNR of testing data (from top to bottom). 
Bottom panel: The effect of each step in the described single-trial analysis 

procedure was tested using one-way repeated-measures ANOVA on SMI.  

B. Prediction of Pain Perception 

Basically, two major problems exist in the prediction of 
pain perception. One is to distinguish LEP from resting EEG. 
The other problem is to predict the intensity of pain perception 
from single-trial LEP. With the proposed method, the 

classification accuracy for LEP vs. resting EEG is 84.39±
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8.11%. And the accuracy in the classification of two level pain 

intensity (high pain: VAS > 5; low pain: VAS ≤ 5) is 84.83±
7.41%. The results are quite close to each other. 

Furthermore, a more complicated five-level classification 
problem is studied. The intensity of pain perception for each 
single trial LEP is divided into four levels (I1: VAS < 2.5, I2: 
2.5 ≤ VAS <5, I3: 5 ≤ VAS <7.5, I4: VAS ≤ 7.5), and resting 
EEG is also considered as one level of no pain (I0).  

 
Figure 2.  The pairwise classification accuracies with their standard 

deviation for the five classes, which are resting EEG (I0), I1, I2, I3 and I4. 

Fig. 2 shows the pairwise classification results of the  
five-level classification. It can be seen from Fig. 2 that, if the 
two levels of pain perception are not adjacent, the 
classification results are very good (> 80%). For several pairs 
of comparison (I0 vs. I3; I0 vs. I4; I1 vs. I4), the classification 
accuracy is higher than 90%. For classification of two adjacent 
levels of pain intensity, the accuracy is in the range of 80~90% 
for I0 vs. I1, and in the range of 60%~70% for I1 vs. I2, I2 vs. 
I3 and I3 vs. I4. Overall, it is easy to distinguish I0 (the resting 
EEG) from other levels of pain elicited by laser stimulation.  

IV. CONCLUSION 

In this study, a new single-trial LEP feature extraction 
method, which combines CSP and MLR, is proposed for 
classification of pain perception. CSP could enhance the 
quality of LEP features through a spatial filtering, while MLR 
was applied to automatically estimate the amplitudes and 
latencies of N2 and P2 from single-trial LEP waveforms, 
which avoids the risk of uncertainty caused by manual 
operation. We found that both the classification accuracies for 
resting EEG vs. LEP and high pain vs. low pain are higher 
than 80%. Moreover, the performance of the single-trial LEP 
feature extraction method was tested in the classification of 
five levels of pain perception, and the results showed that the 
classification accuracy is larger than 80% in most of paired 
comparisons. This method is expected to provide an objective 
and quantitative method for the prediction of pain perception, 
and, further, to contribute to clinical practice. 
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