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Abstract— High dimensional, complex and non-linear nature
of the post-genome data often adversely affects the performance
of predictive models. There are two methods that have been
widely used to model such non-linear systems, namely Fuzzy
System (FS) and Support Vector Machine (SVM). FS is good
at modelling uncertainty and yielding a set of interpretable
IF-THEN rules, but suffers from the curse of dimensionality
whereas SVM is a method that has been shown to effectively
deal with large number of dimensions leading to better gen-
eralization ability. In this paper, a hybrid system is therefore
proposed to improve FS with the aid of SVM-based regression
method and successfully applied to the prediction of binding
affinity of peptides, which is regarded as one of the most
complex modelling problems in the post-genome era due to
the diversity of peptides discovered. The proposed hybrid
method yields comparatively better results than what has been
presented in the recently published papers, therefore can also
be considered for other bioinformatics applications.

I. INTRODUCTION

A peptide is a sequence with a small number of amino
acids that are linked together by a peptide bond. Peptide
binding plays vital roles in regulating cell signaling and
understanding the mechanisms of protein-peptide interac-
tions. As there are many thousands of peptides, identification
of binding and its affinity between proteins and peptides
requires laborious biological process and is time-consuming.
Therefore, there is a need to develop a computational pre-
dictive model that is capable of determining the binding and
its affinity. As the peptides can be represented with a few
thousands of descriptors, this curse of dimensionality makes
this prediction process a complex task. In addition, it gets
much harder due to availability of very small number of
peptides, affinity of which have been experimentally obtained
[1].

Computational methods are utilised for building prediction
models in many biological problems. One of the methods
utilised to model non-linear systems is the fuzzy systems
[2] that have been shown to be more capable of modeling
uncertain and imprecise knowledge and forming a structure
that can represent human reasoning in various applica-
tions. Although there are different fuzzy systems, Takagi-
Sugeno (TS) is commonly utilised for modeling complex
systems [3]. Although there are many methods proposed
to model TS fuzzy system (TSFS), general approach is to
keep the premise parameters constant whereas values of the
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consequent parameters are computed by the least square
estimation. There are methods that have been explored for
addressing to the problems in the least square estimation.
One of the methods is support vector regression (SVR) [4]
that has been shown to be an efficient and robust method and
provides high generalizability and performance. Applications
of SVR have demonstrated considerably better modeling of
various non-linear systems. Therefore in this paper this con-
cept is incorporated with TSFS to better train the consequent
part of the TSFS. Recently, general frameworks to integrate
fuzzy systems with the support-vector based methods were
presented [5], [6]. However, their applications were only
on a very small number of features as similar to other
FS applications but did not take into account of predictive
problem with very large number of attributes. For the premise
part of FS, fuzzy clustering has been used to approximate
the membership functions that characterize each fuzzy set
involved in the rule-base [7].

In this paper, a hybrid system, called support-vector based
Takagi-Sugeno fuzzy system (TSFS-SVR) is proposed and
applied to quantitatively predict peptide binding affinities
in order to show its robustness. The rest of the paper
starts by reviewing Takagi-Sugeno fuzzy system in section
II followed by the determining the structure of the fuzzy
system (section III). The characteristics of the peptide bind-
ing affinity datasets are detailed in section IV. Performance
measurements of the prediction models are presented in
section V. Results and discussion are provided in Section
VI, and finally the conclusions are presented in section VII.

II. TAKAGI-SUGENO FUZZY SYSTEM

Takagi-Sugeno (TS) fuzzy systems have a structure of
fuzzy rules such that the premise is constituted by fuzzy
sets and the rule outputs are determined as a linear function
of input variables. The TS model rules are defined as
conditional statements that are presented by using a linear
function in the consequent part. A fuzzy rule-base with n
input variables (x1, x2, ..., xn), r rules and a single output
variable y can be written as:

Rr : IF x1 is A1r AND x2 is A2r ... AND xn is Anr

THEN zr = f(x1, x2, ..., xn)
(1)

where Anr is a fuzzy set for the variable n and rule r,
generally represented by a membership function, and zr is a
linear function in the consequent part and can be defined as:

zr = f(x1, x2, ..., xn) = m0 +
n∑

i=1

(mixi) (2)
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where m0, m1, m2, ..., mn are the coefficients of input
parameters (x1, x2, ..., xn).

In the TS model each rule generates a crisp output and
then the final output is obtained by aggregating all the
rule outputs. This process is called defuzzification, and the
weighted average defuzzification value y can be defined as:

y =

r∑
i=1

νizi (3)

νi =
νi

r∑
k=1

νk

(4)

where νi and νi are the firing strength and normalized firing
strength of the fuzzy rule, respectively and νi is determined
by using a t-norm operator that can be defined as:

νi =

n∏
j=1

µ(xj) (5)

where µ(xj) is the membership degree of input variable xj .
The fuzzy sets (e.g., Aij) can be described by any form of

membership functions, in which case Gaussian membership
function is used and can be defined as:

µ(xj) = e
−

(xj−cij)
2

2(σij)
2 (6)

where c and σ are centre and standard deviation, respectively.

III. DETERMINING THE STRUCTURE OF THE FUZZY
SYSTEM

A. Determining the Consequent Parameters: Support Vector
Regression

Support Vector Machine (SVM) is a statistical learning ar-
chitecture based on the structural risk minimization [8]. SVM
learning algorithm finds the optimal separating hyperplane
by training a classifier for a given training data. The optimal
separating hyperplane is the one that maximizes the margin
between two classes. SVMs can be generalized to regression
using its linear model. Other than traditional square error
loss function, the ε-insensitive loss function is used in SVR.
This chosen error function tolerates errors up to ε. One other
advantage of using this error function is its tolerance against
noise. Similar to the soft margin hyperplane in SVMs, slack
variables are used for deviations out of the ε-region. SVR
searches for a linear function h(x):

h(x) = wTx+ b. (7)

which is constrained to the following mathematical expres-
sions:

min
1

2
‖w‖2 + C

∑
(ξ+ + ξ−). (8)

subject to:
y′ − (wTx+ b) ≤ ε+ ξ+
(wTx+ b)− y′ ≤ ε+ ξ−
(ξ+, ξ−) ≥ 0

(9)

where two types of slack variables ξ+, ξ− are used to opti-
mise the parameters and w and b represent the coefficients of
the weight vector of the linear expression. The parameter C
is a pre-specified value and works as a regularization factor
between minimizing w and up to the value which deviations
greater than ε can be tolerated. Similar to the classification
problem, a certain training instances are chosen to be support
vectors. Then, the weighted sum of the support vectors are
used to define the regression and adequately model data.

A common method used to compute values of the con-
sequent parameters of TSFS is the least squares estimation
[9]. Given the support vector regression concept with a linear
kernel, this can be potentially utilized to compute values of
the consequent parameters of TSFS. SV regression part was
implemented using LIBSVM library [10].

The variables (νi, νixi1, νixi2, ..., νixin) defined using
the normalized firing strength (Eq. 4), form inputs to SVR
to derive w parameters that correspond to the consequent pa-
rameters in TSFS. Finally, SV-based TSFS can be formulated
as:

z′r = f(x1, x2, ..., xn)
′ = w0r +

n∑
i=1

(wirxi) (10)

y′ =

r∑
i=1

(νiz
′
i +

b

r
) (11)

where y′ now represents the formulation of the SVR-based
TSFS.

B. Determining the Antecedent Parameters: Fuzzy C-Means

Fuzzy c-Means (FCM) algorithm partitions the dataset into
a number of clusters by assigning a degree of membership
for each data object to all the clusters [11]. The FCM
algorithm is constrained to minimize the objective function
by measuring the squared sum of distance between data
objects and cluster centres in any inner product norm, and
the membership of data objects with a weight exponent.

The membership values and cluster prototypes obtained
from the fuzzy clustering algorithm can be used to approx-
imate the membership functions. Moreover, the fuzzy sets
involved in the rules are fully characterised by their mem-
bership functions. Each partition provides information such
as centroid of a cluster, standard deviation of data objects,
all which can be used to derive membership functions. The
clusters and their parameters form the premise part of TSFS
and number of clusters is used to determine the number of
rules.

C. Reducing the High Dimensionality: Feature Selection

Feature selection is the process of choosing a subset
of features used to improve the efficiency of the system
or the model. Features are reduced to the least number
of dimensions possible that yields higher accuracy and
performance. Although there are various types of feature
selection methods used in the post-genome data analysis,
an unsupervised feature selection method, namely multi-
cluster feature selection (MCFS), is used [12] in order to
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TABLE I
GENERAL CHARACTERISTICS OF THE DATASETS USED FOR THE

PREDICTION OF PEPTIDE BINDING AFFINITY

Datasets
Number of Peptide Sequences Number of Peptide

Sequence DescriptorsTraining Testing

Task 1 89 88 5787

Task 2 76 76 5144

Task 3 133 133 5787

make sure that the features stratified are independent of any
predictive model. This method uses information contained
in eigenvectors by solving the generalised eigen-problem to
preserve the multi-cluster structure of the data. This approach
has also been shown to be able to deal with large number of
attributes, which is very common and a key problem in the
post-genome data. The reduced feature subset will be used
as input variables of the rule-based fuzzy system. This low
dimensional structure will help eliminate noise in the dataset
and will provide more robust rule-base to model a non-linear
system.

IV. PEPTIDE BINDING AFFINITY DATASETS

A peptide is a short amino acid chain that is linked
together by a peptide bond. Peptide binding has a critical
importance in regulation of cellular signalling and under-
standing the mechanisms of the interactions between proteins
and peptides. As there are many thousands of peptides, there
is a need for prediction methods to help determine binding
affinities of these peptides. In addition, in order to avoid
this time consuming task, a computational predictive model
can be developed. The difficulty of the peptide prediction
problems when building a prediction model is the number of
features being very large (around 6000) whereas the number
of peptides in the training dataset is relatively small (≤ 150).

To test the proposed model, the high-dimensional peptide
datasets provided at the Comparative Evaluation of Predic-
tion Algorithms (CoEPrA) modeling competition [13] were
used in this study and summarised in Table I and Table II.

As shown in Table I each task contains calibration (train-
ing) and prediction (test) datasets and physico-chemical
descriptors have been provided for each small peptide in the
datasets (for both calibration and prediction datasets). Each
amino acid in a peptide is described by 643 descriptors.
Task 2 consists of octa-peptides that have a total of 5144
descriptors. All other tasks have nona-peptides that have a
total of 5787 descriptors. The task is to predict actual affinity
values for peptides from the amino acid descriptors. The
statistics (range, mean and standard deviation) of the binding
affinities of the peptides of each task are given in Table II.

It is worth noting that only the first three tasks provided
in CoEPrA modeling competition are related to the peptide
binding problem, therefore were taken into consideration in
this study, aim of which is to develop a robust predictive
model for the prediction of binding affinity of the peptides.

TABLE II
PEPTIDE BINDING AFFINITY CHARACTERISTICS

Datasets
Training Testing

Min Max Mean Std Min Max Mean Std

Task 1 2.94 8.65 5.41 1.01 3.13 8.17 5.41 0.95
Task 2 5.01 8.34 7.55 0.77 5.01 8.40 7.58 0.74
Task 3 4.30 8.77 7.08 0.82 5.08 8.96 7.10 0.80

V. PERFORMANCE MEASUREMENTS OF THE PREDICTION
MODELS

There are different measurements used to assess capability
of the predictive models. However, in order to maintain
consistency over the published results and perform consistent
comparison, coefficient of determination (q2) has been used
and is expressed as:

q2 = 1−

n∑
i=1

(yexp − yprd)2

n∑
i=1

(yexp − yexp)2
(12)

where yexp and yprd are the expected and predicted values
of the peptide, respectively, n is the number of peptides and
yexp is the mean of all expected values in the prediction
dataset. The measure q2 is a statistical model based upon
the proportion of variability in a dataset [14]. When q2 is
close to 1 it suggests a model that has been successfully
constructed. Negative q2 values indicate that model poorly
approximates the expected values.

VI. RESULTS AND DISCUSSION

Prior to the analysis, the high dimensional datasets are
normalized so that every feature fall within the same range
of values. Then, the analysis is started by a feature selection
method, namely MCFS method, which is used to reduce
the dimension by estimating the quality of attributes in
the data which then resulted in a low-dimensional physico-
chemical attributes. Then TS fuzzy system with only two
rules was constructed by using the reduced feature set. By
using this rule-base the proposed method is able to build a
robust and interpretable fuzzy system for a high-dimensional
dataset with a relatively small number of data samples. FCM
was used to identify the number of rules as well as the
membership function parameters of the premise part whereas
the coefficients of consequent part was determined by the
SVR. Thus, the structure of the TS fuzzy system consitituted
by the antecedent and consequent parts was determined.

The proposed model (TSFS-SVR) was applied to three
tasks. Compared to the results as shown in Table III, the
results are comparatively better than the recent studies pre-
sented in [1] and [15] for Tasks 2 and 3. The predictive
performance for Tasks 2 and 3 have been improved by 5.5%
and 17.4%, respectively. The parameters were selected prop-
erly to avoid overfitting in SVR. To address to this problem
the grid-search method was applied. This method is not only
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TABLE III
PREDICTION RESULTS OF THE COEPRA COMPETITION TASKS

Task 1 Task 2 Task 3
Methods q2 q2 q2

Step-Wise L1 Regularization [1] 0.667 0.642 0.205

Step-Wise L1, L2 Regularization [1] 0.691 0.668 0.131

KPLS exponential [15] 0.691 0.590 0.219

SVR 0.576 0.707 0.258

TSFS-SVR 0.653 0.707 0.265

simple and reliable but also allows parallel computations
to speed up the calculations. The optimal parameters that
yielded the best performance are found to be C = 0.53,
ε = 0.05 for Task 1, C = 1.63, ε = 0.10 for Task 2, and
C = 0.25, ε = 1.10 for Task 3. Task 1, Task 2 and Task 3
contained 175, 225, 125 features, respectively.

The outcomes of the experiments performed evidently
highlighted the strengths of SVR. Although the model has
been constructed using small sample size in that the nature
of peptide data, the predictive capability of the model proved
to be of good generalization ability and more robust against
the outliers. However quantifying peptide binding affinites
requires more precision. Further experiments were carried
out by using SVR alone using the optimised values of C and
ε parameters in order to compare with the proposed model
and see how fuzziness would effect its performance. The
SVR alone yields poorer results for Tasks 1 and 3 whereas
it remains the same for Task 2. One of the advantages of
using fuzzy systems is its ability of managing uncertainty
that exists in the datasets. The results clearly suggest that the
fuzziness has positively contributed towards the modeling of
the tasks. The results also appear to suggest that different
sets of variables affect the result, and that exploration of the
feature selection methods may further help accelerate the
predictive power of the proposed hybrid method.

One difficulty for the analysis of post-genome data is the
curse of dimensionality. The high-dimensional nature of this
data negatively effects the performance of the prediction
methods. Since thousands of features are available for pep-
tides, a feature selection process was applied as an initial
step to obtain low dimensional feature-set as the inputs of
the fuzzy system. The final and best TSFS-SVR models are
found to contain 175, 225 and 125 descriptors for Tasks 1,
2 and 3, respectively.

The rule-base of the proposed model contained only two
rules which is the simplest form of a FS but resulted in
better model. Therefore, there is more room for improvement
by exploring different number of rules. Due to the page
limitation, the rule-base driven as a result of TSFS-SVR
will be presented and discussed during the presentation of
the paper.

VII. CONCLUSIONS

In this paper, a hybrid system that has helped considerably
improve the predictive capability of TSFS with the aid

of SVR was developed and presented with the successful
applications in the prediction of peptide binding affinity
being regarded as one of the difficult modelling problems
in bioinformatics.

The SVR-based experiments were carried out for three
different peptide affinity datasets. The results suggest that the
proposed hybrid method yields comperatively better results.
In addition, the proposed system yields the interpretable rule-
base while other methods studied in the literature still remain
black-box.

In order to further deal with fuzziness and uncertainty
this SV regression-based approach will be also explored and
implemented for type-2 fuzzy system [16] in order to see
if their predictive capability can be further improved. In
addition, other optimisation methods including regularisation
techniques will be studied for both type-1 and type-2 fuzzy
systems. Given the promising results, different sequence-
driven features and feature selection methods will be further
explored along with varying number of rules.
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