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Abstract— Continuous monitoring of respiratory rate in am-
bulatory conditions has widespread applications for screening
of respiratory diseases and remote patient monitoring. Unfor-
tunately, minimally obtrusive techniques often suffer from low
accuracy. In this paper, we describe an algorithm with low
computational complexity for combining multiple respiratory
measurements to estimate breathing rate from an unobtrusive
chest patch sensor. Respiratory rates derived from the respi-
ratory sinus arrhythmia (RSA) and modulation of the QRS
amplitude of electrocardiography (ECG) are combined with a
respiratory rate derived from tri-axial accelerometer data. The
three respiration rates are combined by a weighted average
using weights based on quality metrics for each signal. The
algorithm was evaluated on 15 elderly subjects who performed
spontaneous and metronome breathing as well as a variety
of activities of daily living (ADLs). When compared to a
reference device, the mean absolute error was 1.02 breaths
per minute (BrPM) during metronome breathing, 1.67 BrPM
during spontaneous breathing, and 2.03 BrPM during ADLs.

I. INTRODUCTION
Accurate estimation of respiratory rate in ambulatory

settings is challenging because of inherent limitations of
different respiratory measurements. The most reliable tech-
niques tend to be obtrusive: flow measurements require a
nasal cannula, respiratory inductance pneumography requires
circumferential chest bands, and impedance plethysmogra-
phy requires electrodes on distant sites on the body. On the
other hand, sensors and measurements that are less obtrusive
are often more sensitive to noise.

As a result of the miniaturization of microelectromechan-
ical systems-based accelerometers and electrocardiographic
(ECG) monitoring devices, methods using ECG-derived res-
piration and chest-mounted accelerometers can potentially
monitor respiration in a minimally obtrusive fashion. Pre-
vious studies have demonstrated that respiratory rate can
be estimated from ECG signals by examining either the
respiratory sinus arrhythmia (RSA) that causes a modulation
of R-R intervals (time between consecutive ECG R-waves)
during the respiratory cycle [1], or the change of cardiac axis
during breathing that manifests itself as a change in QRS
amplitude [2, 3]. The use of accelerometers for measuring
chest movement during respiration has been relatively less
explored; however, the feasibility of accelerometer-based
respiration measurement has been demonstrated [4].

Each of these techniques has inherent limitations, but
utilizing a combination of these measures may allow for
more robust respiratory rate estimation by making up for
the specific weaknesses of each method. While ECG-derived
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respiration is limited to detecting breathing rates of less
than one half of the heart rate due to cardiac aliasing [5],
accelerometry has no such limitation. Furthermore, while
accelerometry can be overwhelmed by noise during periods
of ambulation, ECG-derived measures are less sensitive to
movement. Finally, while the RSA depends on the function-
ing of the autonomic nervous system (ANS) and, therefore,
decreases with age [6] or particular diseases, QRS-amplitude
modulation is caused by mechanical movement of the heart
and is unaffected by the ANS [3].

In this study, we demonstrate that by generating a quality
metric for each component respiratory signal, a weighting of
the component respiratory rate estimates can be computed
such that the combined respiratory rate estimate is robust
in different populations under a variety of conditions. Fur-
thermore, this respiratory rate algorithm is computationally
efficient for implementation on a low-power device.

II. METHODS
A. Experimental design

A patch sensor device designed by Vital Connect, Inc.
(Campbell, CA) was used to collect simultaneous ECG and
accelerometer data. The device acquires a single-lead bipolar
ECG sampled at 125 Hz using two electrodes covered with
hydrogel discs. A tri-axial accelerometer is also present on
the device; the accelerometer has a range of ±4g (where g
= 9.81 m/s2) with a resolution of 0.0078g and is sampled at
62.5 Hz. These data are streamed via Bluetooth low energy
(BLE) to a smartphone for storage. The patch device utilizes
a coin-cell battery and is adhered to the chest in one of
three locations: (1) in a modified lead-II configuration over
the 2nd intercostal space (ICS) at the left mid-clavicular line,
(2) vertically over the sternum, or (3) horizontally at the 6th
or 7th ICS at the left mid-clavicular line. Further information
regarding the patch sensor can be found in [7].

The device automatically performs calibration of the ac-
celerometer to obtain vertical (y-axis), antero-posterior (z-
axis), and left-right lateral (x-axis) directions during an initial
period of standing upright. The respiration algorithms de-
scribed below were implemented on the embedded processor
of the patch sensor, and the respiratory rates were transmitted
via an encrypted BLE link to the receiving smartphone.

A total of 15 elderly subjects (7 male, 8 female) between
the ages of 63 and 79 (70±5 years), with height between
147 cm and 185 cm (167±11 cm) and body mass between
44.7 kg and 99.2 kg (69.4±14.8 kg) participated in the study.
The study consisted of two blocks: one block of spontaneous
and metronome breathing while the subject was seated, and
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one block of activities of daily living (ADLs). During the
first block, the subject performed spontaneous breathing for 4
minutes, followed by 5 blocks of visually-guided metronome
breathing at 12, 15, 18, 21, and 24 breaths per minute
(BrPM) for 3 minutes each. During the second block of
20 minutes, subjects performed a variety of ADLs including
sitting, standing, lying, and walking.

Concurrent with recording of ECG and accelerometer data
from the patch sensor, respiratory rate was recorded using an
Oridion Capnostream 20 capnography monitor. This device
utilizes a nasal cannula to measure end-tidal CO2 and derive
the breathing rate.

B. ECG-derived respiration signals

The RSA is a modulation of the heart rate over the
period of a respiratory cycle. Because of the ANS, the heart
rate increases on inspiration (R-R intervals decrease) and
decreases on expiration (R-R intervals increase); thus the R-
R interval series can be utilized as a respiration signal. A
wavelet algorithm is utilized to detect R peaks in the ECG
[8], and the time between R peaks is taken as the R-R interval
series. Because QRS complexes are not regularly spaced,
the R-R interval series is resampled to 4 Hz using linear
interpolation and low-pass filtered to 0.7 Hz. The sampling
rate of 4 Hz is sufficient for the bandwidth of the respiratory
signals. This process extracts information in the respiratory
frequency range, assumed to be between 0.1 Hz and 0.7 Hz
(6 to 42 breaths per minute).

During respiration, the movement of the chest wall imparts
motion to the heart and changes the apparent cardiac axis
during the respiratory cycle. This change in cardiac axis
manifests itself as a modulation of the amplitude of the
QRS complex. While previous studies have utilized multi-
lead ECG to estimate the cardiac axis directly [3], a similar
respiratory signal can be obtained from a single-lead ECG
[2]. After R-peak detection, the maximum and minimum
ECG values (Vmax and Vmin) in a 100 ms window sur-
rounding the R peak (50 ms on each side) are found, and
the QRS-amplitude is measured as Vmax − Vmin. The QRS
amplitude measurements are also low-pass filtered to 0.7 Hz
and resampled to 4 Hz.

C. Accelerometer signal

Although chest movement during respiration is small,
these movements can be detected as a change in the angle
θ between the gravitational acceleration vector ~g (where ~g
is normalized such that ‖~g‖ = 1) and a unit vector ~u. The
best unit vector ~u is nearly perpendicular to ~g (θ = 90◦)
since, in this case, for a change in angle of ∆θ, where
∆θ ≈ 0, the component of gravity in the direction ~u+ ~∆u is(
~u+ ~∆u

)
· ~g/‖~u + ~∆u‖ = sin (∆θ) ≈ ∆θ. Empirically,

it was found that for an accelerometer mounted to the
anterior surface of the chest, the antero-posterior axis (z-axis)
provides the most robust respiration signal while upright or
lying in a left or right lateral position while the inferior-
superior axis (y-axis) is most informative when supine or

prone. To satisfy these conditions, the accelerometer axis
used for respiration was computed as,

~u =
~g

C
×

 sin θx
cos θx

0

 =
~g

C
×


√
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~g ·~ı
0

 (1)

where C = ‖~g × [sin θx cos θx 0]
T ‖, ~i is a unit vector

along the x-axis, and ~g is obtained by filtering the raw
acceleration components using 2-stage elliptical low-pass
biquad filters with a passband corner frequency of 0.01
Hz, stopband corner frequency of 0.02 Hz, 30-dB stopband
attenuation and 1-dB passband ripple. The quantity θx is the
angle of the gravity vector from the x-axis (lateral left-right
axis) such that 90◦ is standing vertically, and 0◦ is lying in
a right-lateral position. Equation (1) simplifies to:

~u =
~g

C
×

 √1− g2x
gx
0
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gz
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√
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To obtain the full respiration signal, the raw accelerometer
data are filtered using 3-stage elliptical lowpass biquad filters
with a passband corner frequency of 0.7 Hz, a passband
ripple of 1 dB, a stopband corner frequency of 0.9 Hz, and a
30-dB stopband attenuation. The filtered acceleration vector
is then projected onto the respiration axis, ~u, and resampled
to 4 Hz to obtain the final respiration signal.

D. Peak-picking and respiratory rate estimation

Respiratory rate was estimated from the respiration signals
after a peak-picking algorithm was performed to detect
individual breaths. The peak-picking algorithm requires that
all maxima be greater than adjacent minima by a threshold
that is a multiple, α, of the standard deviation, σ [n], of
the past M seconds of the respiratory signal. If a local
maximum is detected that is greater than the previous can-
didate maximum and is greater than the current candidate
minimum by the threshold ασ [n], then this local maximum is
assigned as the new candidate maximum. If a local minimum
is detected that is less than the candidate maximum by the
threshold ασ [n], then the candidate local maximum becomes
a true maximum, the candidate left minimum becomes a
true minimum, and the current minimum is updated as the
candidate left minimum. If the local minimum is not less
than the candidate maximum by the threshold ασ [n], but
is less than the current candidate left minimum, the local
minimum becomes the candidate left minimum.

This peak-picking algorithm is insensitive to large DC
offsets that may be present in the accelerometer-based respi-
ration signal, and the variable peak-sensitivity (based on the
local standard deviation) makes the algorithm robust to extra-
neous peaks caused by noise. The peak-picking parameters
are set to M=3 seconds and α=1.1 for the accelerometer-
based respiration signal, M=3 seconds and α=0.65 for the
RSA signal, and M=4 seconds and α=0.75 for the QRS-
amplitude signal.

To estimate the respiratory rate from the picked peaks,
the times between successive maxima are computed for a
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45-second window, shifted every 5 seconds, and the instan-
taneous breathing rates are calculated. The mean breathing
rate is computed after the top 10% and bottom 10% of
instantaneous breathing rates are discarded. A linear cor-
rection is applied to each respiration rate to correct for
proportional biases using the equation BRunbiased = m ∗
BR + b, where BR denotes breathing rate and m and b are
correction factors. The corrections used were mRSA=1.15,
mQRSa=1.15, maccel=1.05, bRSA=-2, bQRSa= -2, and baccel=0
where the subscripts “RSA”, “QRSa” and “accel” correspond
to the respiratory signals from RSA, QRS amplitude and
accelerometer data, respectively, and were determined by
linear regression.

E. Quality metric and weighting

While the above algorithms generate a separate breathing
rate for each of the respiratory signals, a method is needed to
combine the estimated rates depending on the quality of the
underlying signals. To this end, a quality metric, Q, ranging
from 0 to 1, is computed for each respiratory signal to denote
the reliability of the estimated rate from that signal. The
final breathing rate is computed as the weighted mean of the
breathing rates from all signals:

BRcombined =
QRSABRRSA +QQRSaBRQRSa +QaccelBRaccel

QRSA +QQRSa +Qaccel
.

(3)
Furthermore, because ECG-derived respiration is limited to
detecting breathing rates of less than half the heart rate
(cardiac aliasing), the algorithm relies on the accelerometer-
based breathing rate when it is of good quality. Thus, if
Qaccel > T and BRaccel >

HR
2 , where HR denotes the current

heart rate estimate, then QRSA = 0 and QQRSa = 0. In this
case, T = 0.8.

Derivation of the quality metric for each respiratory sig-
nal utilizes a linear weighting of four features computed
during the peak-picking algorithm. These features, which
are computed for a given 45-second window, are (1) the
coefficient of variation (standard deviation divided by the
mean) of peak-to-peak amplitudes, (2) the mean peak-to-
peak amplitude, (3) the coefficient of variation of the time
between successive minima, and (4) the ratio of the num-
ber of true maxima and minima to all local maxima and
minima. These features provide a measure of the regularity
of the peaks of the respiration signal such that the more
regular the peaks, the more likely these peaks truly reflect
respiration. An estimate of the breathing rate error, Ê, is
computed as a linear combination of the four features,
Ê = max (0, α1f1 + α2f2 + α3f3 + α4f4 + α5), and the
coefficients, αi, are learned using least squares regression on
an independent training dataset of 24 subjects. The estimated
error is converted to a quality measure using Q = e−Ê/τ

which ranges from 0 (for low quality) to 1 (for high quality),
where τ is a constant that determines the correspondence
between the estimated error and the quality metric. The
constant is empirically set to τ = 5, which equates a 1 BrPM
error to a quality of approximately 0.8. If the amplitude of
the respiration signal is small (i.e. close to noise), the quality

TABLE I
MEAN AND STANDARD ERRORS OF MAE AND RMSE ACROSS SUBJECTS

Location Metronome Spontaneous ADLs
Mean Absolute Error (BrPM)

1 1.02±0.07 1.70±0.09 2.09±0.10
2 1.09±0.11 1.73±0.10 2.02±0.07
3 0.96±0.10 1.58±0.08 1.97±0.08

Root-mean-square Error (BrPM)
1 1.57±0.23 3.71±0.36 5.65±0.48
2 2.17±0.42 4.87±0.68 7.26±0.85
3 1.65±0.36 3.16±0.30 5.09±0.40

is reduced as follows: if the mean peak-to-peak amplitude,
f2, is below some threshold, P , the quality is multiplied by
f2
P . In this case, P is set to 50 ms for the RSA algorithm,
100 µV for the QRS-amplitude algorithm, and 0.01g for the
accelerometer algorithm.

III. RESULTS

Data from 5 patches (out of a total of 45) were excluded
from analysis because of poor ECG quality caused by a
lack of adequate electrode-to-skin contact (e.g., from inter-
ference of chest hair). To assess the accuracy of the algo-
rithm presented above, the last minute of each metronome
breathing block was extracted and the mean absolute error
(MAE) and root mean squared error (RMSE) were computed
between the patch-derived combined respiratory rate and
the capnography-derived (reference) respiratory rate. These
errors were also computed for the 4-minute spontaneous
breathing block as well as during the activities of daily living
(ADLs). These results are presented in Fig. 1 and Table I.
While all three locations demonstrate very similar errors, the
errors from Location 3 were generally smaller than the errors
at the other two sites.

On average, the combined respiration rate demonstrated
lower MAE than each of the component rates during
metronome breathing (Fig. 2). Compared to the combined
rate, the MAE was, on average, 0.39, 0.15, and 0.27 BrPM
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Fig. 1. Box and whisker plots of the mean absolute error (MAE) of
respiratory rate at each of the three sensor locations during metronome
breathing, spontaneous breathing, and ADLs. The black horizontal line
indicates the median, the box indicates the 25th and 75th percentiles, and
the whiskers indicate the extreme values.
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Fig. 2. Box and whisker plots of the mean absolute error (MAE) of
the respiratory rates from the individual signals (RSA, QRS amplitude,
accelerometry) as well as the combined respiratory rate. Notches indicate
95% confidence intervals of the medians.
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Fig. 3. Box plots of the median quality metrics of the individual respiratory
signals (RSA, QRS amplitude, accelerometry) during metronome breathing,
spontaneous breathing, and ADLs

greater for RSA, QRS-amplitude, and accelerometer-based
respiratory rates, respectively (p < 0.01, paired t-test).
The results demonstrate, as expected, that the combined
respiratory rate significantly improves accuracy over any
single respiratory signal alone.

Examination of median quality metrics showed similar
quality of all three signals during metronome breathing (Fig.
3). During spontaneous breathing and ADLs, all qualities
dropped, but QRS-amplitude was the least affected. As ex-
pected, accelerometer quality suffered the most during ADLs
due to large body movements. Similarly, abrupt changes in
heart rate during ADLs also adversely affected RSA quality.

Bland-Altman analysis of the patch-derived combined
respiration rate compared with capnography for metronome
breathing yielded a mean bias of -0.29 BrPM, and limits of
agreement at -4.41 BrPM and 3.82 BrPM (Fig. 4).

IV. CONCLUSIONS

While unobtrusive indirect respiratory signals are often
noisy, utilizing a weighted combination of measurements
allows for the robust estimation of the respiratory rate from
ECG and a tri-axial accelerometer in a chest patch sensor.
This method allows for the combination of any number of
additional respiratory signals, such as impedance pneumogra-
phy, chest bands, or flow measurements. The use of a quality
metric to characterize each of the individual components
allows the final estimated respiration rate to rely on the
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Fig. 4. Bland-Altman plot of the respiratory rates from capnography and
from the patch sensor for metronome breathing. The bias is shown as a
solid black line (-0.29 BrPM). Limits of agreement are shown as dashed
lines (-4.41 to 3.82 BrPM).

signals that are most reliable in any particular situation. The
results shown here demonstrate that all three patch locations
are equivalent in terms of error, and can be used to measure
respiration. The relatively low complexity of the algorithm
allows it to be implemented on an embedded processor in
the patch sensor used in this study.

This paper presented a method that combines a set of
respiratory rates that are derived from individual respiratory
signals; however, it may be possible to combine the respira-
tory signals themselves even when the quality of the signals
is variable. This approach may improve the measurement
of other respiratory features apart from rate (e.g., respiratory
effort and variability in breathing) that are useful in screening
and diagnosing a variety of respiratory conditions.
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