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Abstract— This paper proposes a spatially adaptive con-
strained dictionary learning (SAC-DL) algorithm for Rician
noise removal in magnitude magnetic resonance (MR) images.
This algorithm explores both the strength of dictionary learning
to preserve image structures and the robustness of local
variance estimation to remove signal-dependent Rician noise.
The magnitude image is first separated into a number of partly
overlapping image patches. The statistics of each patch are
collected and analyzed to obtain a local noise variance. To better
adapt to Rician noise, a correction factor is formulated with the
local signal-to-noise ratio (SNR). Finally, the trained dictionary
is used to denoise each image patch under spatially adaptive
constraints. The proposed algorithm has been compared to the
popular nonlocal means (NLM) filtering and unbiased NLM
(UNLM) algorithm on simulated T1-weighted, T2-weighted and
PD-weighted MR images. Our results suggest that the SAC-
DL algorithm preserves more image structures while effectively
removing the noise than NLM and it is also superior to UNLM
at low noise levels.

I. INTRODUCTION

Magnetic resonance (MR) imaging has been widely used
in diagnoses, follow-up, and in-vivo research, due to its non-
invasive and non-radiation nature and its ability to produce
high quality images. However, MR imaging generally suffers
from several degradation factors, such as the bias filed, partial
volume effect and noise. Particularly, a major issue accom-
panying MR imaging is its limitation in practical scanning
time, since increased scan duration may introduce problems
like patient discomfort and physiological motion artifacts.
This limitation leads to a trade-off between the signal-to-
noise ratio (SNR) and image resolution. As reported in [1],
[2], [3], due to random fluctuations in the patient body or
receiving coil electronics, thermal noise is one main source

Manuscript received on February 4 2013. This research is supported in
part by the ARC grants, in part by the joint project of National Natural
Science Foundation of China under Grant 30911130364 and French ANR
2009 under Grant ANR-09-BLAN-0372-01, in part by the Region Rhône-
Alpes of France under project Mira Recherche 2008, and in part by the
China Scholarship Council under Grant 2011623084.

S. Wang, Y. Xia, P. Dong and D.D. Feng are with the Biomedical
and Multimedia Information Technology (BMIT) Research Group, School
of Information Technologies, University of Sydney, Sydney, NSW 2006,
Australia (e-mail: {sophiaw, yxia, dongpei, feng}@it.usyd.edu.au )

S. Wang is also with School of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China.

D.D. Feng is also with the Med-X Research Institute, Shanghai Jiao Tong
University, Shanghai 200030, China.

Y. Xia is also with Department of PET and Nuclear Medicine, Royal
Prince Alfred Hospital, Sydney, NSW 2050, Australia.

J. Luo is with the School of Aeronautics and Astronautics, Shanghai Jiao
Tong University, Shanghai 200240, China.

Q. Huang is with the School of Biomedical Engineering, Shanghai
Jiao Tong University, Shanghai, 200240, China, and also with the Med-X
Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.

that competes with the nuclei MR signal. The corruption of
MR images may lead to a major hurdle on the path from the
acquisition to the interpretation of MR images. Therefore,
noise reduction is a necessity for obtaining MR images of
the required quality.

Commonly, MR imaging obtains structural and functional
information via the inverse Fourier transform of the K-
space data. The signal component of measurements thus
usually consists of real and imaginary channels, each of
which is corrupted with zero mean additive Gaussian noise.
Since the magnitude of the reconstructed MR images is
widely used in clinical practice and research settings, in
this research we restrict our attention to reducing the noise
in MR magnitude images. Computing a magnitude image
from the corresponding real and imaginary parts maps the
Gaussian noise into the Rician noise [4]. The Rician noise
is signal-dependent and follows a Rayleigh distribution in
low intensity regions and a Gaussian distribution in high
intensity regions [2]. Reduced image contrast is the practical
consequence.

To overcome the deficiencies introduced by this noise, a
number of denoising methods have been proposed in recent
years, including wavelet-based methods [2], [3], [5] and
nonlocal filtering methods [6], [7], [8]. Most wavelet-based
denoising methods consist of three steps: (a) applying the
discrete wavelet transform (DWT) to the noisy MR image;
(b) filtering the wavelet coefficients to reduce the noise;
and (c) reconstructing the denoised signal using the inverse
wavelet transform. The nonlocal means (NLM) filtering
technique explores the similarity between noisy patches and
utilizes the redundancy in the image for denoising. One of
the most state-of-the-art Rician noise removal techniques is
the unbiased NLM (UNLM) algorithm [9]. As observed by
Nowak [10], the noise bias in squared magnitude image is
no longer signal-dependent and equals to 2σ2, where σ2 is
the noise variance in each channel (i.e. real or imaginary
channel). The UNLM algorithm estimates each pixel value
in the squared magnitude space and then uses a simple bias
subtraction scheme to correct the bias. Traditional Rician
noise removal algorithms have been proved to be capable of
removing noise effectively. However, they are less successful
in simultaneous noise reduction and structure preservation,
due to their inherent lack of the ability to capture detailed
image information.

Motivated by the fact that dictionary learning techniques
can robustly capture the local structures in each image patch,
we propose in this paper a spatially adaptive constrained
dictionary learning (SAC-DL) algorithm for noise reduction
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in MR magnitude images. This algorithm consists of four
major steps. First, the magnitude image is separated into a
number of partly overlapping image patches. Second, the
statistics of these patches are collected and analyzed to obtain
a local noise variance for each patch. Third, a correction
factor is formulated according to the local SNR to make our
algorithm better adapt to the Rician noise. Fourth, the trained
dictionary is used to denoise each image patch under spatially
adaptive constraints. The proposed SAC-DL algorithm has
been compared to the popular NLM and UNLM algorithms
on simulated T1-weighted, T2-weighted and PD-weighted
MR images.

II. THEORY

A. Rician Noise Model

The thermal noise N in MR images is commonly modeled
as a complex random process, whose real and imaginary
parts are independent zero mean Gaussian random variables
with a standard deviation of σ. Thus, the complex MR image
Ĩc acquired by the MR imaging system can be modeled as

Ĩc(i, j) = Ic(i, j) +N(i, j) (1)

where Ic(i, j) is the magnetization distribution and N(i, j)
is the noisy component at pixel (i, j). The corresponding
magnitude image is

X(i, j) =
∣∣∣Ĩc(i, j)∣∣∣

=

√
(Ir(i, j) +Nr(i, j))

2
+ (Ii(i, j) +Ni(i, j))

2

(2)

where the subscripts r and i highlight the real and imagi-
nary parts, respectively. Generally, Nr(i, j) and Ni(i, j) are
assumed to be independent and identically distributed with
zero mean and standard deviation σ. The intensity of each
pixel in the magnitude image |Ĩc(i, j)|, or equally X(i, j),
has the following probability density function

fX(i,j)(X) =
X

σ2
exp

(
−X

2 + |Ic(i, j)|2

2σ2

)
I0

(
|Ic(i, j)|X

σ2

)
(3)

where

|Ic(i, j)| =
√
Ir(i, j)

2
+ Ii(i, j)

2 (4)

denotes the noise-free image and I0 denotes the Bessel
function of the first kind at zero-th order. Therefore, the
Rician-noise-corrupted MR image can also be formulated as
follows in the magnitude image space [7]

X(i, j) =

√
(|Ic(i, j)|+N1(i, j))

2
+N2(i, j)

2 (5)

where N1(i, j) and N2(i, j) are random numbers generated
from two sets of Gaussian distributions, which have zero
mean and the identical standard deviation of σ.

B. Dictionary Learning

We aim to estimate the noise-free magnitude image
|Ic(i, j)| via denoising the observed magnitude image
X(i, j). To this end, we first separate the magnitude im-
age into a number of L partly overlapping image patches.
Suppose Rl is an extraction matrix, the l-th extracted patch
can be formally written as RlX . Let D represent the over-
complete dictionary and αl denote the coefficient vector for
sparse representation of the patch xl = RlX . Then, we have

xl ≈ Dαl s.t. ‖αl‖0 ≤ T1, l = 1, 2, ..., L (6)

where ‖ · ‖0 counts the number of non-zero elements and
T1 is a positive constant. With all image patches being
considered, we obtain the following objective function

minD,Γ
∑
l

‖xl −Dαl‖22 + λ‖αl‖0, l = 1, 2, ..., L (7)

where Γ is the collection of the sparse coefficients. The first
term enforces the data fidelity between the extracted patch
and the sparse representation. The second term emphasizes
the sparsity of the representation of each image patch. The
parameter λ balances the contribution of these two terms.

As shown in Eq. (3) , the Rician noise is signal-dependent
and not additive noise. Traditional dictionary learning ap-
proaches, such as the classical K-SVD algorithm [11] and
augmented Lagrangian algorithms [12], [13], [14] were de-
veloped mainly for removing the Gaussian noise, and hence
may not be suitable for solving this problem. Therefore,
particular constraints should be incorporated into the dictio-
nary learning technique to make it adaptive to Rician noise
removal.

C. Rician Noise Adaptation Scheme

Since the Rician noise follows a Rayleigh distribution in
low intensity regions and a Gaussian distribution in high
intensity regions [2], the objective given in Eq. (7) should
be optimized with different constraints, which adapt to the
intensity levels of each image patch. To this end, the local
noise variance in each patch is formulated for the constraint,
namely

‖xl −Dαl‖22 ≤ T2σl
2 (8)

where T2 is a positive weighting constant and σl is the local
noise standard deviation in the l-th image patch. To estimate
the local noise variance, we caculate the expectation of the
squared Euclidean distance of two noisy patches xl and xl′
as follows

E(d(xl, xl′)) = E
(
‖xl − xl′‖22

)
= ‖xlo−xl′o‖22+2σ2 (9)

where the subscript o denotes the noise-free image. There-
fore, E(d(xl, xl′)) = 2σ2 if xlo = xl′o. With the assumption
that each patch in the image has another equal image patch
[15], the noise variance can be given as follows

σ2
l = min (d(xl, xl′)) /2. (10)

However, in case of the Rician noise, the noise variance
may be underestimated in regions with low intensities. To
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(a) (b) (c)

Fig. 1. Three brain MR images from the BrainWeb database: (a) T1-
weighted MR image; (b) T2-weighted MR image, (c) PD-weighted MR
image.

attack this problem, the noise variance is corrected [16]
according to the following rule

σ̂2
l = σ2

l /ξ(SNR) (11)

where σ̂2
l is the corrected local noise variance in the l-th

image patch. The SNR is counted as SNR = µ/σ, µ is the
mean value of each patch, and

ξ(SNR)

=2 + SNR2 − π

8
exp

(
−SNR

2

2

)
×
(
(2 + SNR2)I0

(
SNR2

4

)
+ SNR2I1

(
SNR2

4

))2

(12)

where I0 and I1 are the zero-th and first order modified
Bessel functions of the first kind, respectively. The stopping
criterion is now updated as

‖xl −Dαl‖22 ≤ T2σ̂
2
l s.t. ‖αl‖0 ≤ T1, l = 1, 2, ..., L.

(13)
After obtaining the sparse representation Dαl for each patch
xl, each denoised pixel value is calculated as the average of
restored values at the corresponding location in all related
patches.

III. EXPERIMENTS AND RESULTS

The proposed SAC-DL algorithm has been compared to
two widely-used denoising techniques, i.e. the NLM and
unbiased UNLM [9], on simulated brain MR studies obtained
from the BrainWeb database at the McConnell Brain Imaging
Center of the Montreal Neurological Institute, McGill Uni-
versity, Montreal, Canada [17]. Each study has a dimension
of 181 × 217 × 181 and a voxel size of 1 × 1 × 1 mm3.
Three reference 2D MR slices were shown in Fig. 1. The
T1-weighted MR slice (left column) has a dimension of
217×181, the T2-weighted MR slice (middle column) has a
dimension of 181×181, and the PD-weighted MR slice (right
column) has a dimension of 181×217. The test images were
corrupted with five levels of noise, namely, 1%, 3%, 5%, 7%
and 9%.

Applying the SAC-DL algorithm to an H×W MR image
restoration consists of five steps: (1) extract (W −4)(H−4)
image patches from the corrupted images by gliding a 5× 5

(a) (b)

(c) (d)

(e) (f)

Fig. 2. The ability of the three algorithms in restoring image details.
The test image used is the T1-weighted image which is contaminated by
9% Rician noise. The restored image gained by (a) NLM algorithm; (b)
UNLM algorithm and (c) the proposed SAC-DL algorithm. The absolute
difference between the denoised image and the noisy image, gained by
(d) NLM algorithm; (e) UNLM algorithm and (f) the proposed SAC-DL
algorithm.

window with a sliding distance of one pixel over the entire
image; (2) calculate and remove the direct current of each
patch using a low-pass filter; (3) calculate the corrected local
noise variance according to Eq. (11); (4) train the dictionary
with the adaptive constraints for denoising each patch; and
(5) reconstruct the intensity value of each pixel and add the
corresponding direct current back to it. The NLM algorithm
and unbiased UNLM algorithm were implemented with their
default parameters.

First, we applied each of these three algorithms to the T1-
weighted brain MR image that was corrupted with 9% Rician
noise. The noise level is calculated relative to the brightest
tissue. The restored image obtained by each algorithm and
the absolute difference between the denoised image and the
noise-corrupted image were displayed in Fig. 2. It reveals
that there exists somewhat blurring artifacts on the edges in
the result of the NLM algorithm. The absolute difference
maps show that both the UNLM algorithm and SAC-DL
algorithm removed more noise than the NLM algorithm did.

Next, we perfomed the experiment on both the PD-
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(a) (b) (c)

Fig. 3. The final trained dictionaries by SAC-DL from 1% noise corrupted
(a) T1-weighted image, (2) T2-weighted image, (3) PD-weighted image.

TABLE I
A SUMMARY OF THE DENOISED RESULTS IN STRUCTURAL SIMILARITY

(SSIM) GAINED BY THE THREE METHODS.

Image PD-weighted image
Noise level 1 3 5 7 9

NLM 0.9376 0.8298 0.7591 0.6976 0.6460
UNLM 0.9367 0.8305 0.7755 0.7244 0.6807

SAC-DL 0.9381 0.8496 0.7925 0.7211 0.6737
Image T2-weighted image

Noise level 1 3 5 7 9
NLM 0.9647 0.8888 0.8304 0.7760 0.7306

UNLM 0.9697 0.8942 0.8430 0.7954 0.7559
SAC-DL 0.9610 0.8964 0.8407 0.7879 0.7377

weighted and T2-weighted brain MR images corrupted by
different levels of noise. We quantitatively assess the quality
of restored images using the structural similarity (SSIM)
index, which has been shown to outperform the widely-
used peak SNR (PSNR) in measuring the quality of natural
images across a wide variety of distortions [18]. To measure
the quality of a distorted image, the SSIM index compares
the correlations in luminance, contrast and structure, locally.
These differences between the reference and distorted images
are averaged over the entire image. It ranges from 0 to 1, with
higher score representing better image quality. The denoising
performances of three algorithms were compared in Table
1. In accordance with the previous visual comparison, this
experiment demonstrates again that the UNLM algorithm and
SAC-DL algorithm produced better results than the NLM
algorithm. Furthermore, Table 1 also shows that in case of
heavy noise the UNLM algorithm outperforms the proposed
algorithm; whereas, when the noise level is low, our SAC-DL
algorithm performs better than the UNLM algorithm.

Finally, the final dictionaries trained by our algorithm for
denoising three test images (i.e. T1-weighted, T2-weighted
and PD-weighted) with 1% Rician noise were displayed in
Fig. 3. It shows that a lot of edges and structure information
have been captured in the learned dictionary. It can also be
observed that the dictionaries trained from the three images
vary a bit due to their distinctive anatomical information.

IV. CONCLUSIONS

This paper proposes the SAC-DL algorithm for Rician
noise removal in magnitude magnetic resonance images.
This algorithm combines the strength of dictionary learning

technique and local noise estimation scheme. The dictionary
learning technique enables it to capture local image details
from each patch and thus preserve image features. The local
noise estimation scheme makes the denoising process adap-
tive to the Rician noise. The experimental results demon-
strated that the proposed SAC-DL algorithm can effectively
remove noise while keeping the important image details. In
our future research, we will further investigate more effective
noise estimation and the optimal parameter setting that can
adapt to distinctive SNR regions and multi-component MR
image structures.
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