
  

 

Abstract— Skeletal muscle is an important tissue of human 

body, and its contractions control and regulate body motions. 

Muscle contraction results in morphological changes of the 

related muscles. Ultrasound imaging is an effective tool for 

studying muscle architectures and monitoring the morphological 

changes of muscles. The latter process can be realized with a 

motion estimation algorithm. However, ultrasound images are 

usually corrupted by speckle noises and performance of motion 

estimation methods can be significantly affected by the noises. 

To get a better performance in motion analysis, in this paper, as 

a pre-processing step, an adaptive filter named adaptive guided 

image filtering (AGF) is suggested to reduce speckle noises. We 

first transformed the multiplicative noise model into an additive 

one by taking the logarithm of the original speckled data, then 

performed AGF to obtain the filtered image, and finally took the 

tackled image back into exponent. Experimental results showed 

that AGF had a better performance in terms of noise attenuation 

and edge preservation compared with other standard filters. In 

quantitative results, the filtered images also had the highest 

Peak-Signal-to-Noise Ratio (PSNR) using AGF. It’s believed 

that AGF is a good choice for the pre-processing stage of muscle 

motion analysis. 

Index Terms—Ultrasound image, speckle reduction, adaptive 

guided image filtering, muscle motion, optical flow 

 

I. INTRODUCTION 

Skeletal muscle is an important tissue of human body, and 
its contractions control and regulate body motions. The 
skeletal muscle architecture is a primary determinant of 
muscle functions [1]. Since mechanical properties of muscles 
strongly depend on their architecture, muscle architecture can 
be used to characterize muscle activities. Ultrasound imaging 
is an effective tool for detecting and measuring muscle 
architectures [2], such as muscle thickness [3], pennation 
angle [4, 5] and cross-sectional area [6, 7] during isometric 
and dynamic contractions since it is economical, 
comparatively safe and adaptable. Muscle contraction not 
only causes muscle motions, but also results in morphological 
changes. Different contractions could result in different 
morphological changes. Therefore, it is natural to estimate 
muscle mobility functions by monitoring the morphological 
changes of muscle in ultrasound image sequence [8, 9]. This 
process can be tracked with a motion estimation algorithm 
such as optical flow [8, 9] or image registration. 

 
*Corresponding author:  yj.zhou@siat.ac.cn. 

1.  The Shenzhen Key Laboratory for Low-cost Healthcare, China 

2. Shenzhen Institutes of Advanced Technology, Chinese Academy of 

Sciences, China 

3. School of Information Engineering, Nanchang Hangkong University, 

China 

However, the performance of these methods is closely 
related to the image quality, and one of the ultrasound image 
shortcomings is the poor image quality, affected by speckle 
noise. Speckle noise affects all coherent imaging systems 
especially medical ultrasound ones. Within each resolution 
cell a number of elementary scatters reflect the incident wave 
towards the sensor. The backscattered coherent waves with 
different phases undergo a constructive or a destructive 
interference in a random manner. The acquired image is thus 
corrupted by a random granular pattern called “speckle” that 
delays the interpretation of the image content. Speckle noise, 
which can be considered as a kind of multiplicative noise [10], 
degrades the quality of ultrasonic images. It reduces the ability 
to distinguish fine details and hence decreases the accuracy of 
motion analysis. Accordingly, speckle filtering is a central 
pre-processing step for motion analysis. 

As we know, adaptive filters take a moving filter window 
and estimate the statistical information of all pixels’ grey 
value, such as the local mean and the local variance. The 
central pixel’s output value is dependent on the statistical 
information. Adaptive filters adapt themselves to the local 
texture information surrounding a central pixel in order to 
calculate a new pixel value. Adaptive filters behave much 
better than low-pass smoothing filters in preservation of the 
image sharpness and details while suppressing the speckle 
noise [11]. In literature, the most widely cited and applied 
filters in speckle reduction include the Lee [12], Frost [13], 
Kuan [14], wiener [15] and median filters [16]. These filters 
have an obvious superiority compared to low pass filters, 
since they take into account the local statistical properties of 
the image. More recently, some state-of-the-art techniques 
have been proposed to reduce the speckle noise, such as 
speckle reducing anisotropic diffusion [17], 
rayleigh-maximum-likelihood filtering [18], and speckle 
reducing bilateral filtering (SRBF) [19]. 

In this paper, we applied an adaptive filter named adaptive 
guided image filtering (AGF) [20] to reduce speckle noises. It 
is reported that this method is able to perform halo-free edge 
slope enhancement simultaneously with the noise reduction 
[20]. Compared with other filters, the results from 
experiments using the suggested method showed a better 
performance on noise attenuation in background and smooth 
regions and enhancement in edge areas. Finally, we used the 
filtered images for muscle motion analysis and evaluated the 
improvement after filtering using AGF. 
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II. METHODS 

AGF is based on guided image filtering (GIF) [21] and the 
shift-variant technique, part of adaptive bilateral filtering 
(ABF) [22]. In this section, we will review the method briefly 
and more details about it can be found in [20-23]. 

A. Adaptive Guided Image Filtering 

It has been proven that AGF has good edge-preserving 
characteristic as described in [20]. The filtering process of 
AGF is originally done under the guidance of an image G that 

can be either the input image I  or another image. We first 
express AGF in terms of the filter kernel. Let 

pI and
pG denote the intensity value at pixel p of the input 

image and the guide image, respectively. kw denotes the 

kernel window centered at pixel k . AGF is then formulated 

as: 
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where k and
2

k are the mean and variance of the guide 

image G in local window kw , | |w is the number of pixels in 

this window, p is the added offset and  is the smoothing 

parameter. An offset-choosing strategy is also applied in 
AGF, in the same manner as this done in the ABF [22, 23]. 
That is: 
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where the intensity difference is defined by p kp G    . 

The key to understand the edge-preserving ability of AGF 

lies in the term  21 (( ) )( ) ( )p p k q k kG G         of 

equation (2). When both ( )p pG  and qG are concurrent on 

the same side of an edge (smaller or larger than the mean), the 
weight assigned to pixel q is large. Conversely, a small weight 

will be assigned to pixel q when they are on different sides 

(one is smaller and one is larger than the mean). The degree of 
smoothing of AGF is adjusted via parameter . The larger the 

value of is, the smoother the filtered image will be [20].  

B. Image De-noising and Application Procedure 

The main process of this algorithm is as follows: 
 Transform the multiplicative noise model into an 

additive one by taking the logarithm of the original 

speckled data. 
 For each input image perform an AGF to obtain the 

corresponding filtered image. 
 Take an exponent. 
 Use the de-noised images for muscle motion estimation. 

III. EXPERIMENTAL RESULTS & DISCUSSIONS 

The experiments were performed on a continuous 
sequence of quadriceps muscle images taken during a 
contraction process. The sequence consisted of 240 images in 
total. A real-time B-mode ultrasonic scanner (EUB-8500, 
Hitachi Medical Corporation, Tokyo, Japan) provided with an 
electronic linear array probe (L53L, Hitachi Medical 
Corporation, Tokyo, Japan) was used to obtain transactional 
ultrasound images of the quadriceps muscle. A human subject 
ethical approval was obtained from the relevant committee in 
the Hong Kong Polytechnic University before carrying out the 
experiment. Details of the experimental setup can be found in 
[24]. Here is evaluated the speckle noise reduction 
performance of the AGF when it is used for pre-processing in 
muscle motion analysis. The AGF is compared to ABF, mean, 
median and wiener filters, respectively. The guide 

image G and the original image I of AGF were chosen to be 

identical. In all cases, the moving window size was 
empirically set to 7x7. All the source code, prepared to 
demonstrate the current work, was written in Matlab 7.11 
(Mathworks, Inc., Massachusetts, USA). 

A representative original muscle image was used in this 
evaluation. The image is shown in Fig.1 (a). It was processed 
using the ABF, mean, median, wiener and AGF filters, 
respectively. The corresponding results are shown in Fig.1 
(b)-(f). In this example, the  parameter is set to a constant 

0.04  in AGF, the s and r are set to 3 and 0.3 in ABF, 

respectively. Note that the mean filter provides good noise 
attenuation and smoothing, but in its output the edges are 
significantly smoothed. The median filter suppresses the noise 
slightly better than mean filter in uniform areas, at the cost of 
excessive smoothing of details, which is especially apparent in 
the mean filter output. The wiener filter output is effective in 
noise suppression with better edge preservation quality than 
the mean and median filter outputs. The ABF filter output also 
provides a better performance than the above-mentioned three 
filters in the sense of noise suppression and gradient 
preservation. It is clear from the images that AGF provides the 
best performance in terms of noise suppression and image 
detail preservation among the tested algorithms. 
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To further evaluate the output from each filter, consider a 
single scan line running through the image as shown in Fig.2 
(a). Fig.2 (b) shows the gray level along the line of the original 
ultrasound image and the corresponding outputs from the 
ABF, mean, median, wiener and AGF filters. An examination 
of the scan line shows that the mean, median and wiener filter 
outputs appear almost noise-free at the cost of significant loss 
of sharp-transition details. The ABF and AGF filters strike a 
better balance between noise attenuation and detail 
preservation. 

In addition to the subjective visual results, 
Peak-Signal-to-Noise Ratio (PSNR) is utilized in our 
experiments to measure the effectiveness of different 
algorithms quantitatively. The metric is calculated for the 
ultrasound muscle sequence. PSNR is defined as: 

10
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where X ,Y represent the original and the de-noised images, 
respectively. 

Fig.3 demonstrates the PSNR of experimental results for 
the different methods. It can be observed from Fig.3 that AGF 
has the highest PSNR, followed by the ABF, wiener, median 
and mean filters, respectively. It can be clearly seen that the 
mean filter provides the worst noise attenuation, while the 
median filter outperforms the mean filter under the same 
criterion. The wiener filter provides better noise attenuation 
than the mean and median filters. The ABF filter provides 
better results than the mean, median and wiener filters in term 
of the metric. The AGF filter provides the best performance 
among the tested algorithms. 

Finally, we used the original and de-noised images for 
muscle motion analysis. Fig.4 (a)-(f) show the results of 
optical flow processing [9] without filtering and using ABF, 
mean, median, wiener, AGF filters, respectively. Based on 
visual motion inspection criteria [25], it can be clearly seen 
that the result using AGF is better than results obtained 
without pre-processing or those obtained using the other four 
methods. 

IV. CONCLUSION 

In this paper, we explored the performance of adaptive 
guided image filtering for speckle noise reduction in 
ultrasound images in the context of its application as a 
pre-processing stage in muscle motion analysis. The method 
outperforms the ABF, mean, median and wiener filters that are 
used for comparison. By visual inspection, it is evident that 
AGF strikes the balance between noise attenuation and detail 
preservation. In terms of quantitative results, AGF 
demonstrated the highest PSNR compared to the other four 
filters. It can be clearly seen that AGF is a good choice for the 
pre-processing stage in muscle motion analysis. 
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(a)                                            (b) 
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Fig.1. Muscle image de-speckling: (a) Original image and processed with 

(b) ABF ( s =3, r =0.3), (c) mean, (d) median, (e) wiener and (f) AGF 

( =0.04) filters. 

 

 
(a) 

 
 (b) 

Fig.2. The original image and the scan line are depicted in (a). The 277th 
column of the original and processed ultrasound images in Fig.1 are 

depicted in (b). 1) Original ultrasound image, 2) ABF ( s =3, r =0.3), 

3) mean, 4) median, 5) wiener and 6) AGF ( =0.04) filter outputs. 
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Fig.3. Comparison chart of PSNR of different methods for ultrasound 

sequence. 

 

    
(q)                                        (b) 

    
(c)                                         (d) 

    
(e)                                         (f) 

Fig.4. Optical flow estimation by the different methods: (a) original, (b) ABF, 

(c) mean, (d) median, (e) wiener, (f) AGF. 
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