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Abstract — Medical images pose a major challenge for image 

analysis: often they have poor signal-to-noise, necessitating 

smoothing; yet such smoothing needs to preserve the 

boundaries of regions of interest and small features such as 

mammogram microcalcifications.  We show how circular 

integral invariants (II) may be adapted for feature-preserving 

smoothing to facilitate segmentation.   Though II is isotropic, 

we show that it leads to considerably less feature deterioration 

than Gaussian blurring and it improves segmentation of 

regions of interest as compared to anisotropic diffusion, 

particularly for hierarchical contour based segmentation 

methods. 

1. INTRODUCTION 

Medical images pose a major challenge for image 

analysis: often they have poor signal-to-noise, necessitating 

smoothing; yet such smoothing needs to preserve the 

boundaries of regions of interest and small features such as 

microcalcifications so that they can be segmented 

accurately.  Image smoothing techniques are generally 

divided into two broad classes: isotropic and anisotropic. 

The former, typified by Gaussian scale-space analysis, 

operate at each pixel (or voxel in 3D) uniformly in all 

directions; the latter operate preferentially in a particular 

direction determined by the local image content (typically 

estimated from the image gradient). Though there is an 

extensive literature on anisotropic methods, few isotropic 

methods are popular in practice. Typically, Gaussian 

filtering is used to suppress noise by diffusing the image 

content [4]. Applying a Gaussian filter essentially amounts 

to a low pass filtering the image, assuming that the high 

frequency component is of little or no consequence. This is 

clearly not true at edges, and predominantly in medical 

imaging applications, such as in the case of mammography, 

where the high frequency content - microcalcifications, 

curvilinear (ductal) structures, and spicules of masses are of 

major clinical significance.  The challenge therefore is to 

remove noise so as to enhance the image for human or 

machine analysis while not suppressing important high 

frequency information. We propose the use of integral 

invariants as smoothing kernels to enhance images for 

segmentation and shape analysis. We first show that II is a 

linear filtering operation that diffuses noise isotropically yet 

preserves high frequency information content substantially 

more effectively than Gaussian smoothing. 

 
 Faraz Janan is a DPhil Engineering Science candidate at the Institute of 

Bio-Medical Engineering (IBME), University of Oxford. Phone: +44 (0) 

7550505969, e-mail: faraz.janan@some.ox.ac.uk.  

Sir Michael Brady FRS FREng FMedSci, is Professor of Oncology at 

the Department of Oncology, University of Oxford UK.   

    Figure 1 shows the Fourier transform of a mammogram and 

compares its Gaussian and integral invariant diffused 

versions. It can be seen clearly that II preserves high 

frequency components as compared to Gaussian filtering. 

Second, we study the trade-off between image and shape 

quality as a result of anisotropic diffusion and the benefits 

that II diffusion may offers in his regard. We compare II to 

Perona-Malik (PM) anisotropic diffusion [3, 11]. Evidently, 

the choice between these two depends upon the specific 

application; however, we find that for mammograms and for 

the segmentation algorithm that we use, II gives better 

results.  By changing the radius r, II can operate at a 

succession of scales whereas the action of PM depends less 

transparently upon the number of iterations n over which it 

is applied as well as the size of the image gradient. 
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Figure 1: FFT of a mammogram and its diffused versions  

 

2. UNBOUNDED INTEGRAL INVATIANTS 

Manay et.al  [2] define (circular area) integral invariants 

by considering a disc   ( ) of radius   applied to every 

point   of a closed contour    the characteristic function is 

then given by,  

 (  ( )  ) ( )   {
       {  ( )    ̇}

           
   (1) 

 

Where  ̇ is the interior of the curve    The local integral 

area   ( ) of the curve C is given by the function   ( ) at 

every point       with integral kernel   as follows:  

 

  ( )   ∫  (  ( )  ) ( )   
    (2) 

Where   is the domain of the curve C.   

 

IIs have been shown to be effective for shape matching 

and for local region matching because they provide a natural 

multi-scale description of a shape. IIs have the expressive 

power to encode a shape; they resemble the representation 

of a shape using curvature functions [1]. However, and 

FFT of the orignal image FFT after II smoothing FFT after Gaussian smoothing
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crucially, compared to differential invariants such as 

curvature, IIs are substantially more robust to noise [5]. 

  A variation of circular II, referred here as unbounded 

integral invariant is used. Instead of imposing a constraint 

on the integration area to overlap with a particular shape; we 

integrate over the complete area of the kernel that overlaps 

with any points inside the image. Hence,  (  ( )  ) is 

actually the area of the integration kernel.  

 

3. RESULTS AND OBSERVATIONS 

Various aspects of II are analysed and compared to PM and 

to Gaussian diffusion. Note that we do not dispute the 

superiority of PM when used with a small gradient and a 

suitably large number of iterations in preserving crisp clear 

edges for being anisotropic. PM works similar to the process 

of creating a scale space, where an image is convolved with 

a family of convolution kernels that increases in width to 

form a scale space [11, 12]. However, PM is non-linear and 

spatially variant in its application over an image. It 

computes a filter shape that is elongated and has an 

orientation that is adapted for each point in the image (at 

each scale). It smooths a region within its boundary that are 

significant edges or lines of a certain strength, and not 

across the boundary. It diffuses the gradients under a given 

threshold value with a low contrast and enhances the 

opposite with a high contrast.  

A. Enhancement of image features  

We have found that II enhances the boundaries of image 

features such as edges and lines by quantizing them into 

more intensity levels as compared to PM. This generates a 

contour map for a shape that has a substantially higher 

number of contours surrounding the shape. This in turn aids 

contour-based hierarchical segmentation algorithms. Figure 

2 illustrates this, an image diffused by II has the boundaries 

of the shapes enhanced, considerably more so than in 

comparison to PM.  

 

  
Figure 2: Contour models of II (left) & PM (right) diffused 

phantom shape 

 

Previously, integral invariants have also been used on 

mammograms for local region matching of segmented 

shapes [13]. Here, we have applied the method to a set of 

mammograms, for example the one with a mass shown in 

Figure 3. The contour model of the mammogram smoothed 

by II has more dense contours surrounding the mass and so 

appears darker in the false colour map. This facilitates the 

automatic detection and segmentation of the mass.  

PM with 30 iterations II with 3-pixel radius 

   
Figure 3: Contour model of an enhanced mammogram by PM 

(left) and II (right). The later has enhanced region.  

B. Noise Suppression    

We have assessed II for noise suppression against PM. 

Here, we do not rely upon the SNR of the diffused phantom 

for comparison, as II is more aggressive in smoothing image 

details; it gives a lower SNR than PM in all cases. ‘Salt and 

pepper’ and ‘multiplicative uniform’ noise models are added 

to the phantom image. Figure 4 shows the noise suppression 

results. A slight asymmetry may be noticed in the diffused 

versions of II, which increases with increasing scale. This is 

because one end of the star shape is convex, which collapses 

on itself as scale increases. The other end is concave, which 

expands downward as a result of diffusion. Together, these 

shift the intensity pattern from right to left, making it 

asymmetric to the original profile.  

 

(a)  (b)  

Figure 4: Scale space comparison of II and PM diffused section of 

intensity profile across the star shape in Figure 2. Here, phantom is 

acquired by added multiplicative Gaussian noise and generated 

after applying salt & pepper noise. PM diffused intensity profile is 

on the left, while II is on the right. n is the number of iterations for 

Perona-Malik, whereas, r is the radius of integral invariant kernel.  

 

In Figure 5, a mammogram is smoothed to remove noise. 

The original mammogram contains a layer of dusty noise 

(shown in blue), shown in (a) at the right end of the image 

that surrounds the mammogram concavely.  In (b) PM is 

shown to have reduced this artefact. In (c), II has eliminated 

the noisy layer completely while the breast boundary is 

retained.  

We observe that PM clusters high intensities at the 

borders of the image and induces an unwanted artefact that 

may give rise to new image structures. This may be 

problematic in applications where image borders contain 
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important information. II does not induce such artefacts, as 

shown in Figure 6.  

 

   
(a) (b) (c) 

Figure 5: (a) A contour map of a noisy DICOM mammogram. 

(b) smoothed by PM, (c) smoothed by II. 
 

 

  
Figure 6: Contour models show the effects of II (left) and PM 

(right) on image boundary 

 

C. Efficiency with respect to segmentation results 

Image smoothing is known to reduce the number of false 

positives and negatives in image segmentation applications. 

For this reason, we evaluated II against other well-known 

noise suppression techniques: speckle reducing anisotropic 

diffusion (SRAD) [6, 8]; total variation denoising using the 

Sobolev method (TV) [7, 8]; and PM. The algorithm has 

been applied to 10 temporal pairs of volumetric density 

maps for the mammograms. The maps were generated by 

Volpara [9].  

 

 
Figure 7: II and PM gives the lowest number of false positives and 

false negatives, and performs well for finding true positives 

A variation of a topographic segmentation algorithm 

based on iso-contours [10] is used to delineate regions of 

interest.  A total of 14 lesions were selected as ground truth. 

II and PM perform equally well in reducing the number of 

false positives and negatives, where the latter performs best 

in detecting true positives. For one mammogram, the lesion 

was not detected by either of the methods. Results are 

summarized in Figure 7.  

D. Shape Deterioration by smoothing kernels 

This section analyses the effect of II and Gaussian 

diffusion (GD) on shape deterioration and intensity flow. 

Object deterioration as a result of intensity diffusion 

depends upon two factors. The first is the ratio of size of the 

object to the size of the diffusion kernel. The second is the 

overall shape of the object. 

There are two ways to approach shape deterioration at 

multiple scales. If a set of kernels of varying sizes is applied 

to a shape, we will get a set of new shape boundaries (shape 

dilation), as well as flow of intensities through the original 

boundaries as a result of diffusion, thus creating a scale 

space. For convenience, we call these boundary scale space 

(BSS) and intensity scale space (ISS) as they refer to the 

deterioration of objects in terms of boundary and its diffused 

intensity, respectively. In the case of BSS, we have the outer 

boundary of diffusion that will actually expand the shape 

area and the inner boundary that will show the deterioration 

and may diminish the structure. Figure 8 shows the 

boundaries of a diffused spiculated mass phantom at a 

certain scale. It is clear that II leads to less deterioration of 

shapes as compared to GD at corresponding scales. It can be 

seen that integral invariants retain shape information more 

accurately and resist deterioration in contrast to GD. In both 

of these examples, II better maintains the overall shape 

signature in terms of outer boundary and resist deterioration 

as for the inner boundary, as compared to GD. Figure 9 

shows an example of a pairs of automatically segmented 

temporal mammograms density maps, enhanced by II. It can 

be seen that II has not deteriorated the regions of interest 

(delineated in blue) despite their small size and have 

suppressed any false positives.  

4. DISSCUSSION 

We have evaluated II as an image enhancement method and 

compared it to PM anisotropic diffusion and to Gaussian 

smoothing. We have shown that it is a reasonable trade-off 

between the two, where in some applications it could be 

preferred over Perona-Malik with a number of advantages as 

explained. We also evaluated it over mammograms as a pre-

processing method to reduce the number of false positives 

and negatives and found it almost effective as Perona-Malik, 

though computational more efficient. For Gaussian 

smoothing, it leads to substantially less deterioration of 

important shape features. It preserves high frequencies to a 

larger extent and is less aggressive in deteriorating shapes as 

compared to Gaussian filter. Particularly in shape analysis 
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application that requires shape description [2], it eliminates 

the need for a separate noise removal filter, as well as 

enhancing image features for intensity based segmentation 

methods.  

 

  
II, r = 3 GD, r = 3 

Figure 8: Diffusion of the image by II and GD at corresponding 

scales. Blue line is the original shape boundary, green and red are 

outer and inner boundaries as a result of diffusion. II shows an 

obvious advantage over GD in terms of shape determination 
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Figure 9: Automatic Segmentation of Integral Invariants 

enhanced temporal pairs of mammogram density maps created 

by Volpara [9]  
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