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ABSTRACT 

 

Reducing patient radiation dose, while maintaining a high-

quality image, is a major challenge in Computed 

Tomography (CT). The purpose of this work is to improve 

abdomen tumor low-dose CT (LDCT) image quality by 

using a two-step strategy: a first patch-wise non linear 

processing is first applied to suppress the noise and artifacts, 

that is based on a sparsity prior in term of a learned 

dictionary, then an unsharp filtering aiming to enhance the 

contrast of tissues and compensate the contrast loss caused 

by the DL processing. Preliminary results show that the 

proposed method is effective in suppressing mottled noise as 

well as improving tumor detectability. 

 

Index Terms—Low-dose CT (LDCT), abdomen tumor, 

dictionary learning  

 

1. INTRODUCTION 

 

CT imaging is increasingly incorporated into clinical 

decision making and despite rapid progresses in CT 

technology over the past decade, one major concern appears 

today related to the associated radiation rate rising [1-2].  A 

large number of researches in CT have been motivated by 

the need to reduce patient radiation dose. Among the 

possible solutions, the most straightforward one is to 

consider lowering the X-ray tube current. Nevertheless, low-

dose CT provides degraded images by increased mottled 

noise and different kinds of non stationary artifacts [3-4], 

which render the interpretation of these images particularly 

difficult. Tumor tissues often thus appear under the form of 

mosaic shapes with a low contrasted illustration [5-6]. Two 

kinds of methods are applied to enhance image quality. They, 

either, directly proceed in the reconstruction domain or 

within a post-processing denoising stage. In both cases, 

efficient noise suppression and tumor tissue preservation 

remain challenging. Neighborhood filters have shown 

interesting properties for the restoration of noisy low dose 

CT images. Let cite for instance, adaptive filters [6] that 

allow to reduce the X-ray dose by 50% for the same image 

quality and without loss in low contrast detectability. Other 

filters such as multiscale penalized weighted least-squares 

[7], bilateral filters [8] and Non Local Mean (LNLM) [9] 

have also shown some efficiency in enhancing anatomical/ 

pathological features in Low dose CT images.  

Recent years have reported a growing interest in the 

study of sparse representation based dictionary learning (DL) 

and patch processing [10-16]. Compared to pixel-wise 

intensity update-based restoration methods, patch-wise DL 

processing are considered as being more robust to mottled 

noise and generally provides a more efficient representation 

of patch-shaped features such as tumors or organs. We 

describe in this paper, a new patch-wise processing, based 

on a sparsity prior in terms of a learned dictionary to 

suppress mottled noises in abdomen tumor LDCT images 

and a contrast-enhancing unsharp filter whose role is to 

compensate the contrast loss induced by the DL process. 

This method referred as DL-unsharp algorithm, is 

described in section 2. The flowchart of the method is given 

in Fig. 1. Section 3 provides a comparative study between 

our algorithm and a LNLM restoration filter [9]. Preliminary 

results show that the proposed DL-unsharp algorithm 

provides a good restoration of structures in LDCT images 

with an image quality that is comparable to the original 

standard-dose CT (SDCT) images.  

 

 

 

 

 

 

 

 

 

 

             Fig. 1 Outline of the proposed DL-unsharp algorithm. 

 

 
Step 2 

 

Step 1 

 Original  LDCT image  y 

Patch based DL processing 

    Enhancing the contrast of image x by applying unsharp filtering 

Output processed image  
p

x  

 DL Processed LDCT image x 
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2. METHOD 

The core idea is to impose a sparsity prior patch-wise on the 

LDCT images in terms of a dictionary D. Assuming the 

patches in the LDCT image are sparsely representable, DL 

based patch processing is carried out by coding each patch 

as a linear combination of just a few patches in the 

dictionary i.e. each patch of the image can be approximated 

by a linear combination of just a few columns from D [11-

12]. This way to proceed leads to find the best global over-

complete dictionary. The coefficients of the linear 

combination can be estimated through the sparse coding 

process described in [13]. The DL based patch processing 

aims to solve the following optimization problem [14]: 
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where, x and y denote the treated and original LDCT images, 

respectively. ij
R  is the operator that extracts the square 

patch ij
x  of size n n  (centered at point (i, j)) from the 

image x. This patch is encoded by ij
D . D is a n K  matrix, 

which is composed by K  columns of n-vectors. Each n-

vector column corresponds to a patch of size n n . Here 

  includes all the coefficient set  ij
  for the sparse 

representation of all patches. 
0

0
|| ||

ij
  denotes the 

0
L  norm 

that counts the nonzero entries of vector ij
 , and T is the 

preset parameter of sparsity level that limits the maximum 

nonzero entry number in ij
 .  

The numerical solution of the optimization problem (1) 

is obtained by a weighted version of the K-means Singular 

Value Decomposition (K-SVD) algorithm [14]. It consists of 

two main steps:  
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(2) aims to train the dictionary D and   from a set of image 

patches. It is solved with the K-SVD after replacing x by the 

known observed image y. This operation is iteratively 

performed in two steps: (1) sparse coding of  (including all 

 ij
 ) using the orthogonal marching pursuit (OMP) 

algorithm; (2) dictionary update by minimizing (2) with D 

being a matrix with unit-norm columns in order to avoid 

scaling ambiguity. Then with dictionary D available, we fix 

D and calculate   using the OMP algorithm. Finally, given 

D and   , we compute the output image x by solving (3) 

according to a simple least squares approach:  
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Contrary to what was pointed out in the literature,  we 

found that the dictionary trained from a SDCT abdomen 

image always provided results that were visually close to 

LDCT images (when compared with the dictionary trained 

from the LDCT image itself). The reason is that most 

abdomen CT images have similar tissue compositions and 

the dictionary discrepancy often expresses a very few 

difference in the final sparsified features. So we decided to 

use a pre-computed global dictionary pD  (cf. Fig.2 (a) for 

illustration) that was preliminarily trained from a high 

quality SDCT image (Fig.2 (b)). One advantage of using this 

global dictionary is that the intensive computations, involved 

in the dictionary construction, can be avoided.  

   
(a)                                                           (b) 

Fig. 2 (a) Dictionary example; (b) Abdomen SDCT image from which the 

dictionary has been trained.  

We finally perform the optimization process using the 

global dictionary pD  obtained from (2) and consider the 

following three steps (S1)-(S3): 
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 (S3), unsharpFilter ,     = p
x x                                            (7) 

Here, the sparse coefficient  and image x can be calculated 

by solving (5) and (6) using OMP and the 

. The   in (5) denotes the tolerance parameter used 

in the computation of the sparse coefficients. Step S3 (7) 

characterizes the final contrast enhancing unsharp filtering 

with the  -weight kernel [16]:  

-  -  -  

-  1+8  -  

-  -  -  

3. EXPERIMENT  

 

Approval of this study was granted by our institutional 

review board. A non-conflict of interest for this work was 

declared. SDCT images of abdomen were acquired on a 

multi-detector row Siemens Somatom Sensation 16 CT 

4015



scanner with a tube current of 260mAs while LDCT images 

were obtained from a reduced tube current of 50 mAs. 

Considering the linear relationship between rube currents 

and X-ray dose,  the radiation exposure in LDCT scan is less 

than 20% of the HDCT scan. The scanning parameters were 

the following: kVp, 120; slice thickness, 5 mm; Gantry 

rotation time, 0.5s; detector configuration (detector 

rows  section thickness), 16mm 1.5mm ; table feed per 

gantry rotation, 24 mm; pitch, 1:1; reconstruction method: 

FBP algorithm with convolution kernel “B20f” (“B20f” is 

the routine smoothing kernel used in abdomen scans for 

Siemens CT). The windows and level setting were chosen to 

optimize the visualization of these data (center, 50HU; width, 

350HU). For evaluation purpose, we compared the proposed 

method with the LNLM method in [9]. The LNLM method 

was accelerated using GPU (Graphics Processing Unit) 

techniques based on [9]. All the CT images were exported as 

DICOM files and then processed offline on a PC 

workstation (Intel Core™ 2 Quad CPU and 4096 Mb RAM, 

GPU (NVIDIA GTX465)) using Visual C++ as 

programming language (Visual Studio 2008 software; 

Microsoft). 

For both algorithms, the parameter setting was 

completed applying a greedy algorithm to find the optimal 

parameter that provided the best qualitative results. This 

qualitative evaluation was carried out in collaboration with a 

radiologist (X. D.Y, 15 years clinical experience). These 

optimal parameters are listed in TABLE I with the 

computation time costs for each method.  

TABLE I. 

 PARAMETER SETTING AND COMPUTATION COST (IN SECONDS) FOR 

DIFFERENT METHODS 

 LNLM method DL-unsharp method 

Parameter 

setting 

h =2, Patch 

size =7 7pN  , 

Neighborhood size 
=81 81nN   

K=256, =8 8pN  , 
0
=3L , 

Iteration=20, T=21,  =21,  =0.5 

Unsharp filter:  =0.1,  

Computation 

Cost (in 

seconds) 

8.07 

K-step O-step I-step F-step 

979.53 2.28 0.96 0.12 

 

To specify the computation cost for different steps in the 

proposed DL-unsharp processing, we use K-step, O-step, I-

step and F-step to represent the K-SVD step (2)-(3) 

(dictionary training), OMP step (5) (sparse coefficient 

estimation), the image update step (6), and the unsharp 

filtering step (7), respectively. We see in TABLE I that the 

dictionary learning in the K-step method is computationally 

much more time consuming than the following steps. So, if 

we remove the K-step and replace it by a pre-trained global 

dictionary (Fig.3 (a)), the proposed implementation (2.28 

+0.96 +0.12 = 3.36 seconds) becomes much more 

computationally efficient than the LNLM method (8.07 

seconds). 

  

  

Fig.3 Results for a dataset of a 61 years female patient having a liver tumor 

(red circles). (a) Original LDCT image; (b) Original SDCT image; (c) 

LNLM processed LDCT image; (d) DL-unsharp processed LDCT image.  

  

  

Fig.4 Results for a dataset of one 56 years male patient having multiple 

hepatic metastases (red arrows) in the abdomen. (a) Original LDCT image; 

(b) Original SDCT image; (c) LNLM processed LDCT image; (d) DL-

unsharp processed LDCT image. 

Fig.3 and 4 illustrate the results for two patient datasets. 

Fig.3 (a) and Fig.4 (a) depict two abdomen LDCT images 

including tumors (specified by red circles or arrows) of a 61 

years old female and 56 years old male patient, respectively. 

Fig.3 and Fig.4 (b), (c) and (d) show the corresponding 

SDCT, LNLM processed LDCT and DL-unsharp processed 

LDCT images respectively. We observe that, under low dose 
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scanning condition, mottled noise severely degrades the 

images and the tumor boundary appears obscured. 

Considering the SDCT images as references, we observe 

that the LNLM processed images (Fig. 3 (c) and Fig. 4 (c)) 

have been smoothed but still contain noise and stripe 

artifacts. The result appears more convincing with the DL-

unsharp method since we can observe a more efficient noise 

reduction with a good preservation of tumor structures (Fig. 

3 (d) and Fig. 4 (d)). Their restoration provides texture 

appearances close to those of the original SDCT images. In 

the one including multiple hepatic metastases in Fig. 4, the 

DL-unsharp algorithm allows enhancing the small structures 

as the small lesions which appears better discriminated than 

in the LNLM processed images (see arrows). 

 

4. CONCLUSION 

 

The algorithm described here and named DL-unsharp is 

employed for improving abdomen LDCT image quality, the 

objective being both to suppress the mottled noise and streak 

artifacts while enhancing the structure edges especially on 

tumors or lesions. This method makes use of a patch based 

DL processing followed by a contrast restoration unsharp 

filtering. Furthermore, the dictionary training can be built 

from available abdomen SDCT images to optimize the 

algorithm performance. We demonstrated the potential of 

the proposed approach on abdomen tumor LDCT datasets. 

Experiment results showed the proposed approach can 

greatly improve the quality of images  with an over 80% 

reduced X-ray dose. 

However, some improvements are still needed: First, 

the whole computation cost of the DL-unsharp processing 

still need to be accelerated to meet the clinical requirement 

(often less than 1 second per image). Second, some 

parameters are currently set empirically and need more 

experiments to validate their value. Thirdly, extensive 

experiments with large image samples have to be led to 

confirm these preliminary results. In conclusion, future work 

will be devoted to all these points: parallelization of 

involved pair-wise operations, automatic estimation of the 

best parameters to optimize the DL-unsharp processing, and 

exploring the proposed application in processing other 

LDCT images.   
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