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Abstract—This study presents an approach to the segmen-

tation of the right ventricle (RV) from a sequence of cardiac

magnetic resonance (MR) images. Automatic delineation of the

RV is difficult because of its complex morphology, thin and ill-
defined borders, and the photometric similarities between the

connected cardiac regions such as papillary muscles and heart

wall. Further, geometric/photometric models are hard to build
from a finite training set because of the significant differences

in size, shape, and intensity between subjects. In this study,

we propose to use a non-rigid registration method developed
recently to obtain the point correspondence in a sequence of

cine MR images. Given the segmentation on the first frame,

the proposed method segments both endocardial and epicardial
borders of the RV using the obtained point correspondence,

and relaxes the need of a training set. The proposed method

is evaluated quantitatively on common data set by comparison
with manual segmentation, which demonstrated competitive

results in comparison with recent methods.

I. INTRODUCTION

Assessment of right ventricular (RV) function and vol-
ume is important in the diagnosis of cardiovascular diseases
[1]. Clinical measurements such as the RV ejection fraction
(EF) and volumes have important diagnostic, prognostic, and
therapeutic implications in patients with acquired heart dis-
ease who need cardiac function follow-up [2], [3]. Magnetic
resonance (MR) imaging allows an exhaustive RV evaluation
with high spatial resolution, and provides a large number of
images. MR imaging has several important advantages over
echocardiography, including excellent image quality and
lack of geometric assumptions. For quantitative functional
analysis and to obtain clinical measurements such as EF, it
is essential to delineate the RV. Manual delineation of the RV
boundary in all MR images1 is tedious and time-consuming,
and automating the process has been the subject of an intense
research effort recently [4].

Due to its complex morphology and function, assessment
of the RV is acknowledged as a more challenging problem
than the assessment of the left ventricle. The problem be-
comes more difficult due to thin and ill-defined RV borders,
its crescent shaped structure, and the complex deformations
of the RV chamber. Further, the RV segmentation methods
should also consider the photometric similarities between
the connected cardiac regions, for instance, the papillary
muscles and heart wall have approximately the same inten-
sity. Therefore, standard segmentation methods based solely
on intensity information cannot yield accurate tracking. To
overcome these difficulties, most of the existing methods use

1Typically, the number of images per subject is equal to 200.

atlas-based techniques [5], [6] or prior geometric properties
[7], [8], such as the shape of the RV learned a priori from
a finite-training set. If only shapes similar to the training set
are allowed, the use of active shape and appearance models
can lead to a realistic solution. However, the optimization of
such models does not always guarantee the global optima.
The main drawbacks of statistical shape or atlas based
approaches are the requirement of large manually segmented
training sets and the results highly dependent on the choice
of the training data. The results are often biased towards a
particular cardiac pathology.

Further, the shape of the RV is significantly different
at end-systole in comparison to end-diastole. Therefore, in
general, it is more difficult to obtain a good segmentation of
the RV at end-systole than at end-diastole using the shape-
based approaches. The results published by the recent RV
segmentation challenge at the MICCAI 2012 conference
show that most of the existing methods have the highest
segmentation error at end-systole. The best reported Dice
metric (DM) values among the seven participants were 0.72
and 0.77 for endocardium and epicardium, respectively. Due
to its smaller size, inaccuracies in the segmentation of the
RV at end-systole affect the clinical measurements such as
EF significantly.

To tackle the problem of delineation of the RV, we
propose to use point correspondence using a non-rigid
registration method developed recently [9]. Given the seg-
mentation of the first frame, the proposed method segments
both endocardial and epicardial borders of the RV using the
obtained point correspondence. The proposed method has
several advantages over existing ones: (1) a shape prior is
not needed to obtain satisfying RV segmentations because
the point correspondence can track any curve in the image
sequence; (2) the distributions of intensity or shape data is
not assumed and the method relaxes the need of a training
set; (3) the method is more flexible for congenital heart
disease where the RV is more variable in shape. Using
registration to delineate the RV is advantageous in that it
provides the sequence of corresponding points over time, a
useful attribute in many cardiac applications such as wall
motion analysis. Further, the proposed method allows RV
volumetric analysis over the complete cardiac cycle, and the
automatic detection of end-systolic and end-diastolic phases
as it provides segmentation at each step in the cycle.

The proposed method is evaluated quantitatively over 32
subjects on a common data set by comparison with manual
segmentations, and yielded average Dice scores of 0.79
and 0.84, respectively, for endocardial and epicardial seg-
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mentations, a competitive result in comparison with current
methods.

II. METHODS

We use a points correspondence between the first image
T1 and kth image Tk defined over Ω ⊂ R

2 to obtain a
sequence of points over time. It can be formulated as the
optimization of similarity/dissimilarity measure [9].

φ̂ = arg opt
φ

Es(T1, Tk, φ(ξ)) (1)

for each pixel location ξ ∈ Ω, where φ : Ω → Ω is a
transformation function, and Es(·) a measure of similarity.
As this problem may not have a unique solution, we intro-
duce a deformation field using a Jacobian transformation µ
and curl of end velocity field γ, where µ : Ω → R and
γ : Ω→ R

1) Moving Mesh Generation: Let µ(ξ) be a continuous
monitor function constrained by

∫

Ω

µ = |Ω|, (2)

The purpose of this step is to find a transformation φ : Ω→
Ω, ∂Ω→ ∂Ω, so that

Jφ(ξ) = µ(ξ), (3)

where Jφ denotes the transformation Jacobian. The follow-
ing computations yield a transformation φ which verifies (3).
Step 1: Compute a vector field ρ(ξ) which verifies

div ρ(ξ) = µ(ξ)− 1 (4)

Step 2: Build a velocity vector field from ρ(ξ):

νt(ξ) =
ρ(ξ)

t+ (1 − t)µ(ξ)
, t ∈ [0, 1], (5)

where t is an artificially introduced (algorithmic) time.
Step 3: Finally, φ is obtained by solving the following ODE:

dψ(ξ, t)

dt
= νt(ψ(ξ, t)), t ∈ [0, 1], ψ(ξ, t = 0) = ξ,

(6)
and setting φ equal to ψ evaluated at t = 1: φ(ξ) = ψ(ξ, t =
1).

We add an additional constraint on the curl of ρ(ξ) to
(4) and solve the ensuing div-curl system under the Dirichlet
boundary condition to obtain a unique solution, as the above
problem may have multiple solutions, i.e.,

{

div ρ(ξ) = µ(ξ)− 1 (7a)

curl ρ(ξ) = γ(ξ) (7b)

with null boundary condition ρ(ξ) = 0∀ξ ∈ ∂Ω, where γ(ξ)
is a continuous function over Ω. Hence, the transformation
can be fully parametrized by Jφ(ξ) and γ(ξ). We ensure
the uniqueness of the solution using the Dirichlet boundary
condition [10]. The Dirichlet boundary conditions may cause
the motion errors to be high at the image boundaries and,
therefore, we pad both images by zeroes.

With the above parametrization, we reformulate (1) as
the following constrained optimization problem [9]:

Problem: Given two images T1 and Tk, defined over Ω,

find the function pair {µ(ξ), γ(ξ)}, that optimizes the cost

in (1), subject to:






∫

Ω

µ(ξ)dξ = |Ω| (8a)

τh > µ(ξ) > τl, ξ ∈ Ω′ ⊂ Ω (8b)

where 0 < τl ensuring that φµ,γ is a diffeomorphism, and

Ω′ is a sub-region of image domain Ω.

Constraints (8a) and (8b) ensures the areas of the domain
and co-domain are equal after transformation and enforces
the incompressibility constraint in sub-region Ω′, respec-
tively. Note that a diffeomorphism corresponds to a positive
transformation Jacobian, which is enforced explicitly via the
monitor function [11].

The above problem can be solved by a step-then-correct

optimization strategy. We refer the reader to [9] for deriva-
tion and numerical implementation details. We compute a
sequence of corresponding points on endocardial as well
as epicardial borders in all the frames using transformation

function φ̂, given the segmentation on the first frame.

III. EXPERIMENT

The proposed method was evaluated over the Training
and Test1 sets provided by the RV segmentation challenge2,
MICCAI 2012. Each data set consists of short-axis MRI
volumes of 16 subjects. The data sets were acquired on 1.5T
MR scanners (Symphony Tim, Siemens Medical Systems,
Erlangen, Germany) with steady-state free precession acqui-
sition mode. More details about the data can be found at the
RV segmentation challenge website. The following param-
eter values were used for all cases: τh = 4 and τl = 0.25.
Ground truth manual segmentations were provided only for
the Training set. In order to assess the performance of
the proposed algorithm on the Test1 Set, we submitted the
automatic contours to the RVSC organizers, who in return,
provided us with the performance measures.

A. Statistical performance evaluation

Two criteria were used to evaluate the similarities be-
tween the manual segmentations and the automatic segmen-
tations:

1) The DM: We computed the DM, a common measure
of similarity between manual and automatic segmentation.
The DM is given by

DM(Va, Vm) =
2Vam

Va + Vm
(9)

where Va , Vm, and Vam are the volumes of the auto-
matically segmented region, the corresponding manually
delineated region, and the intersection between them, re-
spectively. Note that DM is always between 0 and 1, where
1 means a perfect match.

2http://www.litislab.eu/rvsc/
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2) The Hausdorff distance (HD): We computed the HD
[12], a symmetric measure of distance between both au-
tomatic and manual contours. Let us denote automatic and
manual contours by Ca and Cm, respectively. For each point
pia on Ca, we compute the distances to all the points pjm on
Cm. The HD is given by

HD(Ca, Cm) = max(max
i
(min
j
(d(pia, p

j
m))),

max
j
(min
i
(d(pia, p

j
m)))) (10)

where d(·) is the Euclidean distance. The HD is computed in
mm with spatial resolution obtained from the PixelSpacing
in the DICOM header.

Table I reports the DM and HD values for Training and
Test1 sets. The proposed method yielded average Dice scores
of 0.79 and 0.84, respectively, for endocardial and epicardial
segmentations. The average DM values for endocardium and
epicardium for each subject in the Training and Test1 sets
are depicted in Fig. 3(a) and (b). The figure demonstrates
that the proposed method yielded high conformance with
manual segmentations in most cases.

We also evaluated the performance of the proposed
method for estimating the clinical measurements, end-
systolic volume (ESV) and the EF. We did not report
end-diastolic volume since it corresponds to the manual
segmentation. Table II reports the correlation coefficient R
and coefficients of linear regression fit (y = ax+b) for ESV
and EF estimation. The proposed method yielded high corre-
lation between manual and automatic clinical measurements.
Linear regression plots of ESV and EF, depicted in Fig. 2(a)
and (b) with the identity line, illustrate this correlation. The
average and standard deviation errors between automatic and
manual EF are 0.0858±0.06 and 0.1874±0.13 for Training
and Test1 sets, respectively.

B. Visual Inspection

In Fig. 1, we give representative examples of segmented
endocardial and epicardial borders of the RV over a com-
plete cardiac cycle. These examples show that the proposed
method accurately included the papillary muscles inside the
target cavity, although these have similar intensity profile to
the RV myocardium.

The proposed method allows RV volumetric analysis
over the complete cardiac cycle. Fig 4 shows the volume of
the RV cavity plotted against time step, where we applied
Simpson’s rule in computing the volumes based on the
segmented RV areas and slice spacing.

Our MATLAB parallel implementation of the proposed
algorithm running on two quad-core 2.4 GHz Intel Xeon
processors took 5.85± 2.10 seconds to process a sequence
of 19 images.

IV. CONCLUSION

This study presents an approach to segment the RV
from short-axis cine MR sequences. The proposed approach

TABLE I. MEAN AND STANDARD DEVIATION OF DICE METRIC

(DM) AND HAUSDORFF DISTANCE (HD) BETWEEN THE PROPOSED

SEGMENTATION AND MANUAL DELINEATION AT THE END-SYSTOLE.

Hausdorff
Dice metric distance (mm)

Training Set
Endocardium 0.8168± 0.15 7.07± 4.03
Epicardium 0.8627± 0.10 7.53± 3.73

Test1 Set
Endocardium 0.7676± 0.16 9.64± 4.15
Epicardium 0.8220± 0.10 9.99± 3.85

TABLE II. CORRELATION COEFFICIENT R AND COEFFICIENTS OF

LINEAR REGRESSION FIT (y = ax+ b) BETWEEN THE PROPOSED

METHOD AND GROUND TRUTH.

Measurement Linear regression coefficients

Training Set
ESV R = 0.9929, a = 1.0102, b = 3.7846
EF R = 0.9611, a = 0.9229, b = 0.0047

Test1 Set
ESV R = 0.9834, a = 0.9602, b = 19.1602
EF R = 0.9263, a = 0.7937, b = 0.0306

Fig. 1. Representative example of segmented endocardial (green) and
epicardial (yellow) borders of the RV over a complete cardiac cycle.

manual frame 2 frame 3 frame 4 frame 5

frame 6 frame 7 frame 8 frame 9 frame 10

frame 11 frame 12 frame 13 frame 14 frame 15

frame 16 frame 17 frame 18 frame 19 frame 20
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Fig. 2. Comparisons of manual and automatic segmentations over 16
subjects from the Training set. (a) Automatic versus manual end-systolic
volumes. The proposed method obtained a high correlation coefficient of
R = 0.9929 (b) Automatic versus manual ejection fractions. The proposed
method obtained a correlation coefficient of R = 0.9611.
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Fig. 3. Average Dice scores for endocardium and epicardium for each
subject in the Training and Test1 sets at end-systole.
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Fig. 4. A representative example of the RV endocardial volume curve
computed using the proposed approach. We applied Simpson’s rule in
computing the volumes using segmented RV areas and slice spacing.
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is based on point correspondence between the sequence
of images computed using a recent nonlinear registration
algorithm. Given the segmentation on the first frame, the
proposed method segments both endocardial and epicardial
borders of the RV, and does not require a training data set.
The proposed method is evaluated quantitatively over 32
subject on a common data set by comparison with manual
segmentations, and yielded average Dice scores of 0.79 and
0.84, respectively, for endocardial and epicardial segmenta-
tions, a competitive result in comparison with related recent
methods.
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