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Abstract— MRI-guided laser-induced interstitial thermal
therapy (LITT) is a form of laser ablation and a potential
alternative to craniotomy in treating glioblastoma multiforme
(GBM) and epilepsy patients, but its effectiveness has yet to
be fully evaluated. One way of assessing short-term treatment
of LITT is by evaluating changes in post-treatment MRI as
a measure of response. Alignment of pre- and post-LITT
MRI in GBM and epilepsy patients via nonrigid registration
is necessary to detect subtle localized treatment changes on
imaging, which can then be correlated with patient outcome.
A popular deformable registration scheme in the context of
brain imaging is Thirion’s Demons algorithm, but its flexibility
often introduces artifacts without physical significance, which
has conventionally been corrected by Gaussian smoothing of
the deformation field. In order to prevent such artifacts, we
instead present the Anisotropic smoothing regularizer (AnSR)
which utilizes edge-detection and denoising within the Demons
framework to regularize the deformation field at each iteration
of the registration more aggressively in regions of homoge-
neously oriented displacements while simultaneously regular-
izing less aggressively in areas containing heterogeneous local
deformation and tissue interfaces. In contrast, the conventional
Gaussian smoothing regularizer (GaSR) uniformly averages
over the entire deformation field, without carefully accounting
for transitions across tissue boundaries and local displacements
in the deformation field. In this work we employ AnSR within
the Demons algorithm and perform pairwise registration on 2D
synthetic brain MRI with and without noise after inducing a
deformation that models shrinkage of the target region expected
from LITT. We also applied Demons with AnSR for registering
clinical T1-weighted MRI for one epilepsy and one GBM
patient pre- and post-LITT. Our results demonstrate that by
maintaining select displacements in the deformation field, AnSR
outperforms both GaSR and no regularizer (NoR) in terms of
normalized sum of squared differences (NSSD) with values such
as 0.743, 0.807, and 1.000, respectively, for GBM.

I. INTRODUCTION

Laser-induced interstitial thermal therapy (LITT) is a novel
MRI-guided therapy to treat brain tumors and epileptogenic
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foci [1], [2]. While the success of LITT has not yet been
thoroughly assessed, short term patient response may be
evaluated by identifying post-LITT changes in MRI markers.
Because LITT consists of exposing the lesion to focused laser
energy for target precision, nonrigid registration algorithms
aid in detecting detailed and subtle imaging related changes
specific to the treatment location by aligning pre- and post-
LITT images. Therefore, the registration may help identify
tissue changes at the LITT site and hence provide accurate
prognostic information.

Some popular algorithms are B-splines Free Form Defor-
mation (FFD) [3] and physical partial differential equation
(PDE)-based algorithms [4]. Unlike FFD, Thirion’s Demons
algorithm does not require a user-defined grid of control
points but rather captures local deformations at any pixel
location. By operating directly on image intensities and
gradients, Demons algorithm is also more computation-
ally efficient than registration schemes which approximate
solutions to PDEs. Despite these strengths, artifacts may
be introduced when the registration reaches an unsmooth
deformation field resulting in an anatomically implausible
transform. Therefore, the Gaussian smoothing regularizer
(GaSR) is applied to restrict locally varying degrees of
displacements, thus eliminating unnatural deformations [6].

The disadvantage of GaSR is that it operates in an isotropic
fashion and therefore does not preserve local deformations
which tend to occur at tissue boundaries [7], [8]. These
details are crucial to aligning images with Demons algorithm,
especially because the displacements are dependent on edge
information, namely the gradient of the fixed image. Lack of
such information may in turn weaken the ability of the reg-
istration algorithm to fully capture more subtle changes that
manifest within sites of localized treatment. When the de-
formation field is characterized by abrupt changes, a locally
adaptive regularizer is required to preserve discontinuities
along the boundaries while creating smooth deformations in
homogeneous regions.

Cahill et al. [6] presented the convolution-based locally
adaptive curvature regularizer for Demons algorithm by ap-
proximating the solution to a set of diffusion PDEs [6]. How-
ever, its performance was demonstrated to smooth according
to the curvature of a vector field. Without the presence of
abrupt discontinuities, it is unclear how well the locally
adaptive curvature regularizer will be able to capture subtle
changes involved in tumor ablation. Similarly, Risholm et al.
[7] recognized that registering pre- and post-surgery images
using Demons algorithm required discontinuities in the de-
formation field to signify tissue removal. They adopted the
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classic anisotropic diffusion technique originally proposed by
Perona and Malik [9]. The original equation was modified by
incorporating strain tensors to model tissue changes before
smoothing the deformation field. However, this requires prior
knowledge of how imaging markers behave at specific sites,
so the use of directional tensors is impractical for preserving
subtle displacements whose behavior is still undetermined.

In this work, we present a novel locally adaptive regu-
larizer called the Anisotropic smoothing regularizer (AnSR)
that is integrated into Demons algorithm that performs
locally varied smoothing on the deformation field. AnSR
performs aggressive smoothing in only areas containing
homogeneous deformations while performing less aggressive
smoothing at or near abrupt local deformations and tissue
boundaries. Without imposing any directional constraints
such as those found in [7], AnSR aligns images containing
slight deformations which may be too subtle to be captured
by GaSR or possibly the locally adaptive curvature regular-
izer [6]. We demonstrate that AnSR is able to capture subtle
deformations induced by LITT while smoothing out artifacts
inadvertently introduced by the registration algorithm within
large homogeneous regions of the deformation field.

We apply Demons algorithm to a pair of 2D synthetic MRI
brain images to compare the performances of no regularizer
(NoR), GaSR, and AnSR in image alignment. In addition, we
evaluate Demons with the three regularization types on pre-
and post-LITT images for an epilepsy patient and a GBM
patient.

II. METHODOLOGY

A. Thirion’s Demons algorithm

The Demons algorithm registers a pair of images. At each
iteration n, the difference metric Dn(c) is calculated between
the fixed image f(c) and moving image mn(c) based on
intensity values, for all c ∈ C, where c is pixel location and
C is the entire image:

Dn(c) =
(f(c)−mn(c))∇f

‖ ∇f ‖2 + (f(c)−mn(c))
2 . (1)

The individual difference vectors calculated from each pixel
in Dn(c) can be used directly as displacements in the
deformation field: Un(c) = Dn(c), for all c ∈ C. Un(c)
can then be applied to mn(c) to align onto f(c) such that
mn(c+ Un(c)) approaches f(c) as n→∞.

However, using Dn(c) directly as the deformation field
yields physically implausible deformations that are no longer
anatomically meaningful. Therefore, a regularizer is applied
to reduce such unnatural displacements for improved align-
ment. Instead of applying the Dn(c) directly by equating it
to Un(c) for the current iteration n, the deformation field
from a previous iteration or a separate calculation denoted
generally by Un∗(c) is added to Dn(c) and smoothed by a
regularizer S such that

Ûn(c) = S(Dn(c) + Un∗(c)) (2)

before mn(c) is replaced by mn(c+ Ûn(c)).

TABLE I: Demons Algorithm with AnSR pseudocode

Input: f(c), m0(c)
Output: m′(c)
begin
0. define k,∆t,r
1. For n = 0 to max iterations q
2. Dn(c) =

(f(c)−mn(c))∇f

‖∇f‖2+(f(c)−mn(c))2
, for all c ∈ C

3. For i = 0 to r

4. Calculate p(|∇U |) = e
− |∇U|2

2k2 and solve Eq. (4)
5. Apply update Un,i+1(c) = U i(c) +∇U i(c)∆t; for all c ∈ C
6. endfor;
7. Ûn(c) = S(Dn(c) + Un,r(c)) for all c ∈ C

8. mn+1 = mn(c + Ûn(c)) for all c ∈ C
9. endfor;
10. until convergence or n=q
11. m′(c) = mq(c)

B. Smoothing regularizers

1) Gaussian smoothing regularizer (GaSR): GaSR is a
2D Gaussian kernel whose size is the standard deviation σ
defined by the user. This regularizer is isotropic, meaning
that as it moves across the entire image it uniformly av-
erages the deformations across all dimensions. The larger
the σ, the more aggressive the smoothing. GaSR yields a
smooth deformation field Ûn(c) = S(Dn(c) + Un−1(c), σ)
before mn(c) is aligned to f(c) to yield a final registered
image m′(c) that would otherwise contain artifacts due to
implausible deformations without regularization. Note that
here Un∗(c) = Un−1(c) in Eq. (2).

2) Anisotropic smoothing regularizer (AnSR): AnSR uses
finite forward differences to iteratively approximate a solu-
tion to the anisotropic diffusion equation, a partial differential
equation initially presented in [9]:

∂U(x, y, t)

∂t
= ∇ · ∇U(x, y, t), (3)

where ∇ represents the image gradient. By default, the
solution is the deformation field smoothed by GaSR, but a

conductance function p(|∇U |) = e−
|∇U|2

2k2 was introduced to
reduce smoothing in areas with a large gradient magnitude,
resulting in

∂U(x, y, t)

∂t
= ∇ · p(|∇U |)∇U. (4)

Thus, AnSR is superior to isotropic regularizers such as
GaSR in that it is locally adaptive. As a result, the defor-
mation field contains more natural displacements without
losing important details along the boundaries of anatomical
structures. The user is able to define: 1) the conductance
parameter k which scales the aggressiveness of smoothing by
p(|∇U |), 2) the time step ∆t of the finite forward difference
equation to control the size of the filter, and 3) the number
of smoothing iterations r:

Ûn(c) = S(Dn(c) + Un,r(c)), (5)

where the smoothed deformation field Ûn,r(c) is the approx-
imate solution to Eq. (4) using the chosen parameters and
Un∗(c) = Ûn,r(c) in Eq. (2). The algorithm presented in
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Fig. 1: The fixed and moving images with selected regions of interest (ROI)s used to evaluate performance. Figure 1(a) shows the original BrainWeb image
on which an artificial deformation was induced to generate the moving image Figure 1(b). The pre- and post-LITT GBM images are presented in Figure
1(c),(d), respectively. Figure 1(e),(f) show the pre- and post-LITT epilepsy images, respectively.

Fig. 2: The results from the synthetic exper-
iment on pre- and post-LITT MRI. Figure
2(a),(b),(c) show the registered images using
Demons with NoR, GaSR, and AnSR, re-
spectively. Figure 2(d),(e),(f) present the cor-
responding difference between the registered
images and the fixed image and (g),(h),(i) show
the corresponding deformation field magni-
tudes.

Fig. 3: The results from the clinical GBM ex-
periment on pre- and post-LITT MRI. Figure
3(a),(b),(c) show the registered images using
Demons with NoR, GaSR, and AnSR, respectively.
Figure 3(d),(e),(f) present the corresponding differ-
ence between the registered images and the fixed
image and (g),(h),(i) show the corresponding de-
formation field magnitudes, where the arrows have
been removed for clarity.

Fig. 4: The results from the clinical epilepsy experiment
on pre- and post-LITT MRI. Figure 4(a),(b),(c) show
the registered images using Demons with NoR, GaSR,
and AnSR, respectively. Figure 4(d),(e),(f) present the
corresponding difference between the registered images
and the fixed image and (g),(h),(i) show the corresponding
deformation field magnitudes, where the arrows have been
removed for clarity.

Table I demonstrates how AnSR is incorporated into Demons
algorithm.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset description

Demons regularized with AnSR was validated on a series
of 1) synthetic experiments and 2) clinical experiments on
brain MRI. The first study used 2D synthetic brain MRI
downloaded from the McBIC MNI BrainWeb database at
181 x 217 with 1 mm/pixel resolution. A deformation was
induced to simulate ablation of tissue on one image and
the experiment was repeated with 5% noise. The second
study registered 512 x 512 T1-weighted brain MRI taken
pre- and post-LITT to treat an epilepsy patient and a GBM
patient. The skull and background were masked out and an
initial alignment between the pre- and post-LITT images was
performed using affine registration.

B. Implementation and Performance Measures

The algorithms were programmed using Insight Segmen-
tation and Registration Toolkit (ITK) with images visualized
in Paraview. For all registration experiments, the Demons
algorithm was employed with NoR, GaSR (σ = 2.0), and
AnSR (k = 2.0, ∆t = 0.067, n = 5). The parameters for
all registration experiments were determined empirically and
kept consistent across all studies. Performance was evaluated
within particular regions of interest (ROIs) that exhibited

TABLE II: Description of the datasets used for evaluation

Type Experiment Objective
Synthetic Deformation (no

noise)
Recover original deformation

Synthetic Deformation
(noise)

Recover original deformation in the
presence of noise.

Clinical GBM Register pre- and post-LITT MRI
Clinical Epilepsy Register pre- and post-LITT MRI
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the need for locally adaptive regularization, such as lesion
sites and tissue interfaces. Quantitative results were obtained
by calculating the registration error via normalized sum of
squared difference (NSSD) of image intensities, which is
defined by the SSD normalized by the maximum SSD among
the three types of regularization for each study.

C. Co-registering synthetic brain images

A synthetic deformation was induced on the fixed image
(Figure 1(a)) to generate the moving image (Figure 1(b))
in order to model the shrinkage in the tumor as expected
from LITT, and the three types of Demons algorithm were
performed (NoR, GaSR, AnSR). The results in Figure 2
concentrate on the ROI to display subtle differences in
registered images (Figure 2(a),(b),(c)) in registration error
(Figure 2(d),(e),(f)) arising from deformations that are only
appreciable locally. In Figure 2, AnSR helps preserve de-
formation on the boundaries and tissue interfaces, where
the local deformations are not smoothed over compared to
GaSR (Figure 2(h)). On the other hand, NoR results in a
large number of spurious changes being identified on the
difference image. Therefore, the corresponding deformation
fields in Figure 2(g),(h),(i) demonstrate the value of the
selective smoothing with more aggressive smoothing of the
deformation field within the larger homogeneous regions
of the deformation field and more conservative smoothing
on the tissue interfaces. According to the NSSD values
calculated on the ROI (Figure 5), AnSR and NoR result in
very similar error magnitudes and are much less than that
of GaSR. Adding 5% noise to this experiment increased the
error for all three regularizers, but did not change the relative
rankings.

D. Co-registering pre- and post-LITT brain images

After skull-stripping and affine pre-alignment, the post-
LITT images for epilepsy and GBM were registered to
their respective pre-LITT images. Figure 1(c),(d) display the
pre- and post-LITT MRI for the GBM experiment. Note
that the lesion is located in the lower left corner. After
performing Demons registration, the registered images in
Figure 3(a),(b),(c) show that with NoR, artifacts emerge as
discrete patches of identical intensity, while these artifacts
are not apparent with AnSR and GaSR. The difference in
the ROI (Figure 3(d)) is less than that of AnSR and GaSR
(Figure 3(e),(f)) and is an example of artifacts introduced
by NoR. On the other hand, GaSR caused displacements
(Figure 3(h)) that were too smooth and failed to recover
the pre-LITT image. However, AnSR best recovered the
deformation caused by LITT while reducing the artifacts
that would have emerged without regularization. Similarly,
the pre- and post-LITT MRI are displayed in Figure 1(e)(f)
for the epilepsy experiment with the registered images,
difference images, and deformation fields in Figure 4. In
the epilepsy results, AnSR also appears to eliminate more
artifacts (Figure 4(f)) than with NoR or GaSR (Figure
4(d),(e)) for the same reasons described for the GBM data.
As shown in Figure 4(g),(h),(i), AnSR outperforms the other

Fig. 5: NSSD values for all experiments comparing the three regularizers.

two methods by: 1) preserving the local displacements at
tissue interfaces that would otherwise be blurred by GaSR
and 2) avoiding the artifacts that would otherwise occur
without regularization. Figure 5 reveals that for both the
GBM and epilepsy datasets, within localized regions, NSSD
was lower for AnSR compared to GaSR and NoR.

IV. CONCLUDING REMARKS

LITT is a recent form of laser ablation for brain lesions
and epilepsy, but its effect on tissue is poorly understood.
In this work we presented the Anisotropic smoothing regu-
larizer (AnSR) in the context of Demons, which may help
effectively align of pre- and post-LITT MRI to accurately
capture local tissue changes. On both synthetic and clinical
epilepsy and GBM MRI, AnSR was shown to outperform
both Gaussian smoothing regularizer (GaSR) and no regular-
ization (NoR). Future work will involve additional extensive
evaluation of AnSR on more patient data.
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