
  

 

Abstract—This paper presents an implementation of stereo 

vision techniques to capture the geometric model of patient’s 

face for registration in the frameless neurosurgery. A distance 

transform is applied on 2D CT/MRI multi-slices for on-site 

registration, further reducing requisite computation. In order to 

validate accuracy of the system, we designed a phantom to 

directly measure its target registration error (TRE). 

Experimental results show that the TRE is 2.72 ± 0.735 mm. 

 

I. INTRODUCTION 

Surface matching [1], especially the registration between 
human face feature and CT/MRI image, has been an important 
approach to reference patients to a navigation system for 
frameless neurosurgery. The approach completely replaces 
stereotactic frames, bone-implanted fiduciary marker or 
skin-attached markers for registration.  

There has been many ways to obtain the face contour in the 
physical space, either by direct contact or remote sensing, 
such as laser range scanner [2-3] and optical [4] or electrical 
magnetic [5] positioning devices. However, sensing the skin 
via direct contact suffers from elasticity of the skin, while 
hand-held registration using laser reflections [6] relies on 
steadiness of the operator to collect well-distributed data on 
interested regions. Based on recent advances in image 
technology, we have developed procedures for the 
dual-camera calibration [7] and reliable scheme [8] for 3D 
modeling of human face using a dual-camera system.  

Besides, the huge size of the extracted point clouds of 3D 
shapes demands an efficient algorithm to register these two 
datasets. Among the methods to register CT/MR images with 
3D face data, the Iterative Closest Point (ICP) algorithm [9], 
together with building a k-D tree [10], has been the dominant 
method. Although these approaches are fast enough for 
practical applications, however, they are extremely sensitive 
to initial pose and require multiple trials to find a reliable 
solution.  

To alleviate this shortage with comparable speed, we 
propose a Chamfer Distance Transform method [11] to assign 
distance quantities at each CT image layer.  

With this transform, degree of match can be directly 
estimated by direct indexing without calculation of distances 
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between closest points. Major improvement in performance of 
the approach comes from the benefit that the distance 
transform has to be executed only once for the layers. 

In order to validate accuracy of the system, we designed 
and made a phantom using the iPro 8000 SLA Center, 3D 
Systems Inc. [12]. Inside the phantom, there are accurately 
allocated markers for direct estimation of the target 
registration error (TRE) [13].  

II. METHOD 

A.  The overall framework 

The proposed neurosurgical navigation system employs 
stereovision to capture 3D facial data. By registering CT/MR 
imaging with the geometric face data, medical 3D images are 
aligned with the patient in the physical space for further 
treatment, such as image-guided surgery (IGS) or medical 
augmented reality (AR).  

The stereo vision system is built using two Sony D-70 PTZ 
cameras, which requires only one pair of shots for 3D 
modeling. 3D Coordinates of the points representing human 
face is derived from corresponding locations on images 
captured from the same scene. In [8], we proposed a scheme 
which requires only one exposure to find the correspondence 
between intensive locations in the images for 3D 
reconstruction. The method is initiated with the SIFT 
algorithm [14], and successive correspondences are found in 
order using an optimization algorithm. 

For direct registration between CT/MR imaging and 3D 
face data, the surface contours are extracted from CT slices, 
and the optimization algorithm is used to find the best 
coordinate transformation for the face data to match that of the 
corresponding surface points in the CT images. We propose a 
Chamfer Distance Transform [11] to assign distance 
quantities at each CT image layer for estimating the degree of 
match used in the optimization algorithm.  

Both the problems of searching matching locations in 3D 
facial model construction and registration between CT/MR 
imaging and 3D face data can be transformed into 
minimization tasks and solved by efficient optimization 
methods. In [8], we proposed a parallel version of the Particle 
Swarm Optimization algorithm, denoted as the PPSO 
algorithm, for these tasks. The overall framework is illustrated 
in the flowchart of Fig. 1.  
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Figure 1. The flowchart of the registration between CT 
model and the reconstructed face data for the neurosurgical 
navigation system 

B.  Registration of CT Images and 3D Face Data Using 

Chamfer Distance Transform and Optimization Algorithm 

Before In this section, we propose a robust procedure for 
registration of 3-D face data to the CT/MRI images without 
particular restriction on initial pose of the registered objects. 
Our approach includes application of the Chamfer Distance 
Transform [11] to assign distance quantities at each CT/MR 
image slice and the use of the PPSO optimization algorithm 
[14] to find the best coordinate transformation for the face 
data to match that of the corresponding surface points in the 
slices. 

 The computation of a two dimensional chamfer DT 
consists of the convolutions of two masks, the forward mask 
and the backward mask, with the binary image, as shown in 
Fig. 2. In the simplest form, both masks have only two rows: 
the forward mask is composed of [b, a, b], and [a, 1], and the 
backward mask [1, a] and [b, a, b], where a and b are design 
parameters related to gradient of distance. The convolution for 
the forward mask is row-wise down, from left to right, while 
the convolution for the backward mask is row-wise up, from 

right to left. If the pixel at (i, j) is with intensity ,i jv , the 

convolutions will result in  

Figure 2. The forward mask and the backward mask in a 
two dimensional chamfer DT. 

, 1, 1 1, 1, , 1min( , , , )i j i j i j i j i jd v b v a v b v a                     (8) 

where ,i jd  is the intensity of the pixel on the distance map. 

    Figure 3(b) illustrates the distance map of a contour on a 
113-by-95 pixels image, shown in Fig. 3(a), using mask 
parameters a = 4 and b = 5. In the distance map, the intensity 
of a pixel depends on its distance from the nearest pixel of the 
object. Note that the intensity at the pixels describing the 
object is 0 since the distance of a pixel from itself is zero. 
Further operations on the distance map may adjust the effects 

of distance. For instance, let ,i jd  be the intensity of a pixel on 

the i-th row and j-th column of a distance map, an operation of  

,0.1
, 1 i jdNew

i jd e


                          (4) 

results in a modified distance map shown in Fig. 8(c), in 
which the dominating effect of the contour is significantly 
reduced. Figure 4 illustrates an overview of the resultant 
image slices.  

 

Figure 3. (a) An illustrative simple object. (b) Distance 
map of the object using masks with a = 4 and b = 5. (c) 
Modified distance map using equation (4) to reduce the 
distance effect.  
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Figure 4. The application of distance map on each slide of 
the CT/MR images. 

The degree of match, denoted as D, between two 2D 
images M  and H , where M is a distance map similar to Fig. 
8(c) and H is composed of data describing a contour similar 
to Fig. 8(a), can be defined as 

 (1 ),M H
ij ij

i j

D d d                                (5) 

where 
M
ijd and 

H
ijd  are the intensity of a pixel on the i-th row 

and j-th column of images M  and H , respectively. Since 

only 'sM
ijd are in grayscale, the calculation of the degree of 

match can be simplified by treating 
H
ijd as a mask and 

summarizing the corresponding 'sM
ijd  only.    

For this registration case, M is a CT/MR image slice and 

H is a set of data points collected from the surface model of a 
patient’s face on a particular cross section taking a trial 
orientation. 

As shown in Fig. 5, the CT/MR image slices are discretely 
distributed in space with a constant distance of ,z which is 

0.8 mm in this example. In order to obtain 
H

ijd of equation (5), 

2D projections of the 3D data set of a patient’s facial 
geometric model can be conducted by classifying the set into 
closest slices. Taking the numbered data points in Fig. 5 as an 
example, point 1 belongs to the surface of slide a, point 2 and 
3 belongs to the surface of slide b, point 4 and 5 belongs to the 
surface of slide c, while point 6 belongs to the surface of slide 
d. 

In the proposed registration procedure, the CT/MR image 
slices, the M images, are kept fixed, while the surface model 
of a patient’s face, which provides the H images, is under 
rigid body transformation. This transformation is a 
combination of translation and rotation, and can be 
represented as a 4-by-4 homogeneous transformation matrix 
[16] when the data points are represented in homogeneous 
coordinates: 

( ) ( , , , , , )

cos cos sin sin cos cos sin cos sin cos sin sin

cos sin sin sin sin cos cos cos sin sin sin sin

sin sin cos cos cos
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Figure 5. The relationship between CT/MR image slices and 
3D data points of a patient’s facial geometric model. 

Figure 6. Convergence history of the best cost values in an 
implementation of 10 parallel swarms and one swarm. 

where [ , , , , , ]Tx y z        is the transformation 

parameter vector composed of Euler angles { , , }   and the 

amount of translation { , , }x y z   .   

The degree of match, defined in (5), is a function of the 

transformation parameter vector, ( )D D  . The problem is 

then formulated into an optimization problem of searching for 

  such that D is minimized. Figure 6 shows a typical 

comparison between the PPSO algorithm and the standard 
Particle Swarm Optimization algorithm, demonstrating the 
superiority of the algorithm.  

C.  Accuracy validation 

A plastic CT-compatible phantom was made using the iPro 
8000 SLA Center, 3D Systems Inc., for accuracy assessment. 
As shown in Fig. 7, the phantom has 24 artificial targets 
located on the head surface and 35 inside the skull; all are 
accurately designed using the Pro/ENGINEER Wildfire 5.0. 
The targets are 10 mm in diameter and 2 mm high with 1.5 mm 
wide pinholes at the center.  

The registration accuracy was validated by on-site surface 
registration. The target registration error (TRE) is defined as 
the deviation between the coordinates estimated by the system 
and the CAD data. Experimental results show that the TRE is 
2.72 ± 0.735 mm. Figure 8 shows the distribution of TRE of 
these 25 tested locations. 
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Figure 7. The CAD model modified from CT image of a 
person for phantom generation. 

Figure 8. The distribution of the target registration error 
(TRE) of the 25 measured points. 

 

III. CONCLUSION 

This paper proposed an efficient registration strategy for 
frameless neurosurgery based on 3D human face data 
captured by a stereovision system. The registration between 
CT/MR imaging and the geometric face data allows medical 
3D images to be aligned with the patient in the physical space 
for further treatment, such as image-guided surgery (IGS) or 
medical augmented reality (AR).  

With the Chamfer Distance transform, degree of match 
can be directly estimated by indexing without calculation of 
distances between closest points. Major improvement in 
performance of the approach comes from the benefit that the 
distance transform has to be executed only once for the layers. 
Based on a practical registration procedure using a plastic 

phantom with 25 inside markers, the target registration error 
(TRE) is 2.72 ± 0.735 mm.  
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