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Abstract— The study of stem cells is one of the most im-
portant biomedical research. Understanding their development
could allow multiple applications in regenerative medicine. For
this purpose, automated solutions for the observation of stem
cell development process are needed. This study introduces
an on-line analysis method for the modelling of neurosphere
evolution during the early time of their development under
phase contrast microscopy. From the corresponding phase
contrast time-lapse sequences, we extract information from the
neurosphere using a combination of phase contrast physics
deconvolution and curve detection for locate the cells inside
the neurosphere. Then, based on prior biological knowledge,
we generate possible and optimal 3-dimensional configuration
using 2D to 3D registration methods and evolutionary optimi-
sation algorithm.

I. INTRODUCTION

The study of stem cells development plays a key role in
modern biomedical research. From the different types of stem
cells studied worldwide, neural stem cells and progenitors
are by far the most unknown. But they are also the most
promising for a better understanding of the brain, the cure of
neurodegenerative diseases (e.g. Parkinson, Alzheimer, etc. )
and the improvement of regenerative medicine.
One of the main tools for cell study is based on high-
throughput screening. It consists mainly to observe living
cell and their behaviour, such as mitosis (division), apoptosis
(death), cells movement, lineage relation and fate prediction.
This information is used in several research field such as
genomic research, tissue engineering, and stem cell biology.
Most of these experiments are usually monitoring cells
evolving in two dimensions.
Several methods propose to detect and segment the cells
and to automatically track and trace their lineage over time.
These methods use either frame-frame segmentation and
association [1], or motion filter tracking [2]. More recently,
methods were proposed for predicting the fate of the ob-
served cells [3], [4]. Such methods use features extraction
and classification methods to predict the fate of a cell, like

1S. Rigaud is with the French National Center for Scientific Re-
search (CNRS) and the Agency for Science, Technology and Research
(I2R/A*STAR), IPAL UMI CNRS, Singapore. stephane.rigaud
at ipal.cnrs.fr

2C-H. Huang is with the Institute of Bioinformatics, A*STAR, Biopolis,
Singapore. huangch at bii.a-star.edu.sg

3S. Ahmed is with the Institute for Medical Biology A*STAR, Biopolis,
Singapore. sohail.ahmed at imb.a-star.edu.sg

4J-H. Lim is with the Institute for Infocomm Research A*STAR, IPAL
UMI CNRS, Singapore. joohwee at i2r.a-star.edu.sg

5D. Racoceanu is with the University Pierre and Marie Curie, Paris,
France and the French National Center for Scientific Research, IPAL UMI
CNRS, Singapore. daniel.racoceanu at upmc.fr

death, division, or dividing into a specialised cell.
However, the most interesting part of the neural stem cells
comes from the expression of their characteristics (self-
renewal population, multi-potency, etc.). Such characteristic
cannot be fully observed in standard culture. A protocol,
called neurosphere formation assay [6], was developed to
force neural stem cells to express these characteristics by
making the cells grow into 3-dimension cell structure. A stem
cell is isolated and put into suspension. This cell is going to
divide and create a population of cells that will compose
a spherical structure called neurosphere. Until recently, this
protocol was not monitored, but more and more research are
done to extract information for the development of neuro-
sphere. Some work have been done to track the neurosphere
over time [7], or to segment them at low magnification of
drug tests [5].
In this study, we improve and facilitate the monitoring of
the neurosphere growth in 3-dimension for biologist. More
precisely, we propose a monitoring platform for neurosphere
observation under phase-contrast time-lapse sequences at
high magnification. As the neurosphere formation assay is
a 3-dimensional process where cells evolve freely in suspen-
sion into a solution, we include a structural 3-dimensional
modelling aspect in the monitoring to enhance the visualisa-
tion of neurosphere cells configurations over time. Thus, we
propose an analysis and synthesis approach by statistically
determining the most probable 3-dimensional configuration,
based on our observation of the image and prior biological
knowledge.
The paper is organised as follows: section 2 explains the
overall proposed method and section 3 details its implemen-
tation. Experiments and results are in section 4.

II. METHOD

The goal of our system is to extract information from
the neurosphere formation sequences and then, estimate a
relevant 3D configuration of the neurosphere. Our system
integrates three modules (Fig. 1), including: (1) an obser-
vation module, which detects, segments and analyses the
microscopic images; (2) a modelling module based on rules,
that generates a diversity of possible models of the observed
cells called population; and (3) a convergence module, which
will determine the best models and make them converge to
a better optimum solution.
The system starts by taking as input the images sequentially
generated by the microscope. Every image is processed by
the observation module, which will segments the cell(s)
present in the neurosphere. This module provides information

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 3989



(1) Analysis (2) Synthesis

(3) Registration - Optimisation

2D Cell Detection 3D Models 
Generation

Registration

optimisation

Projection

stop criterion

loopM
ic

ro
sc

op
e 

Im
ag

e

Be
st

 m
od

el
s

Fig. 1: System workflow. The image is, first, passed to the
observation module (1), the modelling module (2) uses data
extracted from the observation module to generate a set of
possible models, and the convergence module (3) makes the
best model converging to the observation.
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Fig. 2: Observation module process. (a) The raw image
from the microscope of a 3-cell size neurosphere. (b) The
restored phase-contrast image. (c) The cell centroids heat
map determined from the Hough space. (d) Detected cells
result.

on the neurosphere shape, the number of detected cells, and
some other features present in the image. Based on these
outputs, the model module generates a set of models that
could represent the current neurosphere and the cells compo-
nent configuration. Because multiple models can correspond
to the observation, each model is scored according to its
likelihood with the observation. The likelihood is determined
by comparing different parameters, such as shape and texture,
between the observation and the different models proposed.
The best-generated models are selected according to their
scores and modified iteratively in order to converge towards
an optimal representation of the current observation done by
the first module.

III. IMPLEMENTATION

A. Phase-contrast cell segmentation

Despite the high contrast between neural stem cell and
the background, classic segmentation methods such as edge
detection using gradient norm (i.e. Canny-Deriche filter) does
not provide satisfactory results due to the phase-contrast
artefacts such as non uniformity of cell membrane intensity,
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Fig. 3: Ranking of model by projection and registration.

unclear delimitation of the cells, and illumination variation
in the image sequence. These variations are often present in
phase contrast modality. In our previous work [9], a classic
approach with level set method [8] to segment the neuro-
sphere was used. However such method was still affected
by the different artefacts of the phase-contrast and was not
providing a robust result on all our data.
In this paper, we use instead, the phase-contrast restoration
algorithm proposed by Yin et. al. [10] to remove these
artefacts and calculate an artefact-free image. The restoration
algorithm is using an approximation model of the phase-
contrast physics, such as

g(x) ∝ (δ(r)− airy(r)) ∗ f(x) + C (1)

where g is the observed image, f the restored image to be
determined, C a constant corresponding to the background,
δ the Dirac function and airy an obscure Airy pattern.
The reconstruction of f from g is defined as the following
minimisation problem

O(f) = ||g −Hf ||22 + γsmooth(f) + βsparsity(f) (2)

where H is a sparse matrix, ||.||2 a L2-norm, and γ,β are
weights respectively to the smoothness and sparcity term of
the optimisation. Further details on the method can be found
in [10]. An example of the reconstruction of our data can be
observe in fig. 2b.
Once the restored image is done, a heat map of the centroids
and radius of each visible cell is determined by detecting
partial curve in the image, using Hough transform. As
the detected partial curve from the cell membrane is not
complete and, most of the time, does not describe a perfect
partial circle, an approximation of the centroids is made,
based on local maxima of the heat map, (Fig. 2c). At the
end of the process, a detection of the visible cells is obtained
(Fig. 2d).

B. 2D-3D registration

Our approach relies on the principle of 2D-3D registration
methods. More precisely, we try to find a corresponding
3D model to a 2D microscope image. In order to find the
transformation T that link the data, they have to be brought to
the same dimension. Based on the review work of Markelj et.
al. [11], we use a projection strategy that consist in projecting
the 3D data into the R2 space of the 2D data and then search
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for the transformation T by registering the 2D data and the
projected data (Fig. 3). Such as

T : P(T (X3D
A )) = X2D

A ⇐⇒ X2D
B (3)

Where P is the projection, T the transformation and XA and
XB the two dataset.
A random population of models is generated based on
prior knowledge on neurosphere configuration. Each model
is represented by a configuration of spheres that represent
the cells in R3. A particular configuration is given by a
set of spheres that respect configuration criteria: cell-cell
overlapping, cell-cell contacts and cell proliferation rates.
Once a population of model is generated, we can start the
registration process. Each model is projected into the 2D
space of our observation. An intensity based registration
focusing on two criteria functions (CF ): a shape comparison
and a texture comparison. The shape comparison is made
between the shape of the projected individual and the seg-
mented shape of the neurosphere of the microscope image.
The texture comparison is based on the phase-contrast halo.
The cells usually appear with a dark interior and a bright
boundary, which is a common aspect under phase-contrast
microscopy. Using a gradient descent optimisation and a
mean square error, this registration approximates the best
rigid transform parameter {θ, c, τ, σ} that register the two
images, where θ and c are respectively the angle and the
centre coordinates of the rotation, τ the translation vector
and σ the scale.
The metric value is calculated using the different criteria
function, shape score and texture score, are summed and
saved as a score for the corresponding model, such as:

T = argmax
T

N∑
j=1

CFj(P(AT (X3D
A )), B(X2D

B )) (4)

where N = {1, 2} is the total number of criterion func-
tion and CF the a criterion function. This score, which
is actually an error, provides us a ranking of the couple
{model; transform} so generated.

C. Model optimisation

Once a set of model has been selected according to its
registration score, we search to optimise the different model
to improve their score. Thus, we propose a stochastic search
of the different solution using an evolutionary optimisation.
The algorithm is based on the dynamic (µ + λ) evolution
algorithm [12], usually applied on genetic bit string, that
introduces a heuristic randomized search. This model only
uses a mutation operator to generate new individual. In the
same way, for all models, we apply a mutation, correspond-
ing to a random translation of one sphere that composed
an individual by a normalized vector. Once modified, we
apply the model corresponding transform and recalculate its
score. If the model is improved, we keep the modified model
otherwise we discard it.

TABLE I: 2-dimension cell detection results

Precision Recall F-Score
Previous method [9] 0.870 0.838 0.854
Current method 0.884 0.906 0.895

TABLE II: Parameters effects on global process time (sec.)

0 iteration 25 iteration 50 iteration 100 iteration
Pop. 10 104.01 117.35 129.07 158.51
Pop. 25 120.48 152.46 185.24 250.18
Pop. 50 146.37 209.55 284.20 414.17

IV. EXPERIMENTS AND RESULTS

A. Data

The system was tested on an experimental set of data
composed of twenty sequences of phase contrast images
over time, at 40 magnification and a 3× 3 binning. All the
sequences start with a single cell in culture and monitored
over two days, with a frame rate of 20 min per image, for
a total of 135 images per sequence. Each sequence was
made using an on-line microscope tracking algorithm [13]
that adapts the microscope x, y position and its z focus
to the cells movement in order to maintain each observed
neurosphere in the centre of the field of view and at a correct
focus.

B. Results

We calculated the precision and recall score
(Tab. I) of the cell detection process presented
at the beginning of the section 3. Such as
precision = tp/(tp + fp), recall = tp/(fp + fn) and
f − score = 2 ∗ (precision ∗ recall)/(precision+ recall).
We define the true positive (tp) as a cell correctly detected,
the false positive (fp) a detection that do not correspond
to a cell, and the false negative (fn) a cell that was not
detected by the process. We have obtained the precision
and recall score respectively 0.884 and 0.906. Based on
our previous test [9], we have globally improved the cell
detection f -score, from 0.854 to 0.895.
We compared the registration results by observing the
variation of the score of the best model for multiple runs
with a population size of 100 (Fig. 4). We can see an
improvement of the score compared to previous results.
However, we can observe that the process does not always

Fig. 4: Best score over 10 simulations on an neurosphere
image.
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Fig. 5: Examples of results on different time-lapse sequences and at various times. First column represent the raw images
of the cells. The second and third column is the restoration result of phase-contrast and the cell detection results. The fourth
column the 2D-3D registration temporary results. The last column is the 3-dimensional model representation of the cells
observed.

converge to the best solution. This is due to the fact that
2D-3D registration does not have a unique solution. The bad
convergence of the model can be corrected by using more
parameters into the criteria function during the registration
process, but it will affect the global cost of the process.
We have tested our modelling methods on different
sequences, for each image containing various complex
neurosphere at early stage of development (Fig. 5), where
we were able to obtain good cell detection and modelling
of simple but also more complex neurosphere. The time
process depend of the parameters used (Tab. II) and can be
important. However, it remains relatively fast compare to
the time resolution of the image sequence we are working
on, and the cell cycle of division (∼ 24h).
The method was developed using C++ language, the Insigth
Toolkit (ITK) API and the Visual Tookit (VTK) API. The
different tests were made on an Intel core i5 at 2.53GHz,
4G of memory.

V. CONCLUSIONS

We proposed a modified method for the monitoring of
the neurosphere development process. It uses phase-contrast
reconstruction method to produce a new observation image
that is used to detect cells present in neurosphere and allow a
3D visualisation of cells configuration in neurosphere, based
on texture analysis and shape registration. This new method
achieved an improvement of 5% on the cell detection and a
global improvement of 5% to 9% of the model generation.
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