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Abstract— In this article we investigate the suitability of
a manifold learning technique to classify different types of
emphysema based on embedded Probabilistic PCA (PPCA).
Our approach finds the most discriminant linear space for
each emphysema pattern against the remaining patterns where
lung CT image patches can be embedded. In this embedded
space, we train a PPCA model for each pattern. The main
novelty of our technique is that it is possible to compute the
class membership posterior probability for each emphysema
pattern rather than a hard assignment as it is typically done by
other approaches. We tested our algorithm with six emphysema
patterns using a data set of 1337 CT training patches. Using
a 10-fold cross validation experiment, an average recall rate
of 69% is achieved when the posterior probability is greater
than 75%. A quantitative comparison with a texture-based
approach based on Local Binary Patterns and with an approach
based on local intensity distributions shows that our method is
competitive. The analysis of full lungs using our approach shows
a good visual agreement with the underlying emphysema types
and a smooth spatial relation.

I. INTRODUCTION

Chronic Obstructive Pulmonary Disease (COPD) is an

irreversible lung condition that involves different diseases

of the airways and parenchyma[1]. This group of diseases

are expected to be one of the major causes of morbidity and

the third cause of mortality by 2020. Emphysema is one of

the main pathophysiological manifestations of COPD, which

can be defined as the destruction of the pulmonary alveoli

walls implying an enlargement of the air spaces in the lung

parenchyma [2]. Morphologically, most authors distinguish

between three types of emphysema, centrilobular emphysema

that affects the respiratory bronchioles, panlobular emphy-

sema that implies the destruction of the whole acinus and

paraseptal emphysema that is morphologically similar to the

other two types but occurs by definition near the pleura. In

this article we consider six patterns of interest: normal tissue

(NT), paraseptal emphysema (PS), panlobular emphysema

(PL) and three subtypes of centrilobular emphysema: mild,

moderate and severe (CL1/CL2/CL3).

Computed Tomography has been used by clinicians to

assess emphysema as CT findings show a high correlation
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with the real extent of the disease [2]. However, visual

scoring and interpretation of the images are subjective and

time consuming so different approaches for automatic em-

physema quantification have been proposed. The primary

technique used for the detection and objective quantification

of emphysema is based on lung density or densitometry [3]

while more recently developed approaches are based upon

textural analysis. These methods combine features extracted

from co-occurrence matrices [4], local binary patterns (LBP)

[5] or multi-resolution features obtained from filter banks [6],

[7]. A simpler alternative based on kernel density estimation

(KDE) [8] has been proposed recently. A different approach

to this effort may be based on manifold learning. The data of

interest lies on an embedded nonlinear manifold within the

higher-dimensional image space. For example, this approach

has been used successfully to recognize faces [9].

In this article we propose a novel approach to classify

different patterns of emphysema based on a probabilistic

interpretation of the manifold in which each pattern is

embedded. Our main goal is not to propose a hard classifier;

emphysema assessment is a complex task that involves a

large inter-subject variability. Rather, we propose a method

that computes the class membership posterior probabilities

for each emphysema patterns. This probabilistic framework

may provide both clinicians and emphysema quantification

approaches with additional information to handle the uncer-

tainty associated to this problem. To achieve this, we im-

plement Probabilistic Principal Component Analysis (PPCA)

[10] preceded by generalized Linear Discriminant Analysis

(LDA) [11], a step designed to find the most discriminative

lower dimensional space in which to apply PPCA. Prob-

abilistic manifold approaches have been also proposed for

the problem of face recognition elsewhere [12], however our

approach is unique in the use of a supervised embedding

step based on LDA and a formal probabilistic extension

of PCA. To evaluate the performance of our approach we

use 10 fold cross-validation schemes in a data set of 1337
emphysema samples obtained from 267 COPD subjects. Also

a comparison with LBP [5] and with KDE [8] is carried out.

II. METHODS

In this section, we will present our method (see Fig. 1).

First, we perform an initial dimensionality reduction using

a global PCA. Next, we find an embedding space for each

emphysema pattern versus the rest where the discriminative

information under projection is maximal using a generalized

LDA [11]. Finally, we compute a PPCA model in the

embedded space to obtain a class membership probability for
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Fig. 1. Schematic view of our method. For each emphysema pattern a
LDA and a PPCA model capture is trained to capture the likelihood of each
pattern.

the input image sample. PPCA is a linear manifold learning

technique derived from a density estimation perspective.

A. Global linear embedding: PCA-step

Before applying LDA, a dimensionality reduction step is

performed by means of PCA. LetXk = [xk1 ,x
k
2 . . .x

k
Nk
], k ∈

[1 . . . Nc] be a set of observed d-dimensional data vectors

where Nc is the number of classes (patterns) and Nk is the

number of samples per class. In our case, the feature vectors

are 31×31 pixel image patches arranged as a column vector.

Using all the training samples, PCA computes a projection

matrix QPCA that reduces the dimension from d to dPCA

with dPCA < d such as Zk = QPCAX
k . The basis of

QPCA can be interpreted as a set of linear operators.

B. Supervised embedding: LDA-step

The aim of this step is to find the embedded space that

best discriminates the k pattern from the others. Fisher

Linear Discriminant Analysis performs a dimensionality re-

duction preserving as much class discriminatory information

as possible. This technique fits very well to our problem

for two reasons. First, it is a supervised method, so we can

take advantage of our data labeling. Second, the resulting

projections have a compact, monomodal distribution that can

be efficiently captured by PPCA (as can be seen in the

example given in Fig. 2). Instead of using the traditional

algorithm, which only finds one discriminant vector, we

use the generalization proposed by Duchene and Leclercq

that permits to find n discriminant vectors [11]. For each

emphysema pattern, k, a LDA model is defined using two

classes, C1 = Z
k and C2 = {Z

1 . . .Zk−1Zk+1 . . .ZNk} such

that the ratio

Jk =
qk

t
nS

k
Bq

k
n

qk
t
nS

k
Wq

k
n

(1)

is maximized, where SkB is the between-class covariance

matrix, SkW is the within-class covariance matrix for the

classes C1 and C2.

The method proposed in [11] maximizes Jk by computing

a linear subspace Qk
LDA = [qk

t
1,q

kt
2 . . .q

kt
dLDA ]

t that

can be used to project each image vector onto the most

discriminant embedded space for pattern k of dimensionality

dLDA.

C. Probabilistic Emphysema Classification: PPCA-step

PPCA derives PCA in the maximum likelihood framework

allowing to calculate posterior class-membership probabili-

ties in a formal way. The approach is described in detail in

[10].

Using a Gaussian latent variable model, it is possible to

compute the likelihood of an input vector y for a given

emphysema pattern k.

p(y|k) = (2π)−dLDA/2|Ck|−1/2e−
(y−µk)tCk−1

(y−µk)
2 (2)

where µk = 1
N

∑Nk
n=1Q

k
LDAQPCA(x

k
n − x̄) is the mean of

the data for pattern k and x̄ is the global mean of the data.

Ck = σk
2I+WkWkt (3)

is the model covariance for pattern k where

σk
2 = 1

dLDA−dPPCA

∑dLDA
j=dPPCA+1 λj is the noise variance

and λj are the smallest eigenvalues of the sample covariance

for each class

Sk =
1

N

Nk∑

n=1

Qk
LDAQPCA(x

k
n − µ

k)(xkn − µ
k)t. (4)

Wk = Uk
dPPCA

(Λk
dPPCA

− σk
2I)1/2R is the weight matrix

for each pattern, where the dPPCA column vectors of the

dLDA×dPPCA matrix Uk
dPPCA

are eigenvectors of Sk, with

corresponding eigenvalues in the dPPCA× dPPCA diagonal

matrix Λk
dPPCA

and R is an arbitrary dPPCA × dPPCA

orthogonal rotation matrix.

The posterior probability for the emphysema pattern k

given the data y is defined by means of the Bayes’ rule

as

p(k|y) =
p(y|k)Πk∑Nc
j=1 p(y|j)Πj

(5)

where Πi =
Nk
NT

are the priors and NT is the total number

of samples in the training set.

Figure 2 shows an example of how the method works

when the data is embedded in a two-dimensional space

using our training set. 20% of the samples for each class

were segregated and projected with the models computed

from the rest of the available samples. LDA is successful at

defining an embedded subspace that separates a given pattern

k from the rest. Then, PPCA estimates a likelihood density

function (represented with isolines) that can be used to

evaluate new data (represented as squares). The separability

achieved by LDA is dependent on the initial dimensionality

reduction performed by PCA (higher dPCA implies better

separability), however the generalization of the LDA model

to new examples is affected by high dPCA values.
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Mild Centrilob. (CL1)
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Fig. 2. An example of the LDA feature space for dPCA = 400

and dLDA = 2 for two tissue types. For both normal tissue (top)
and mild centrilobular (bottom) emphysema, the manifold learnt by
LDA properly separates those classes from the other class samples
using a training set corresponding to the 80% of the available
samples. The isolines represent the likelihood for the data given
by the PPCA model. Green squares represent the testing data for
each class projected in the model trained for that class (red circles).
Blue circles represent the rest of the data points projected in the
LDA-derived embedding space for that model. It is worth noting
how the LDA model is able to project new data into the proper
embedded space that is in turn captured by PPCA.

III. RESULTS

Emphysema Database. In our experiments we utilized

1337 training samples that were labelled by an expert. The

distribution of samples per pattern was: NT=370, PS=184,

PL=148, CL1=287, CL2=178, CL3=178. The samples were

selected from a group of 267 subjects scanned across 16
different institutions as part of the COPDGene study. On

average, the expert labeled six samples per patient at random

based on prototypic expression of disease and without any

prior spatial correlation. As such we can consider that the

samples are independent representations of disease regardless

of the patient that were selected from. The expert performed

a second review to evaluate the consistency of the assign-

ments and samples that were non-consistently labeled were

discarded. The spatial size of the samples was chosen to

fit the physical extent of emphysema within the secondary

lobule corresponding to 31 × 31 pixels patches (d = 961).

Prior to the application of our method, each image pixel was

normalized by means of the z-score using the global mean

and standard deviation of all the training pixel values.

Parameter selection. Our approach involves three dimen-

sionality reduction steps, PCA, LDA and PPCA, and the

embedding dimensionality in each stage of the method is a

free parameter. We set dPCA, dLDA and dPPCA to optimize

the classification accuracy defined as the distance to the

perfect classifier on the training set using a nested 10-fold

cross validation [13] with a grid search (dPCA ∈ [20, 100],
dLDA ∈ [10, 20] and dPPCA ∈ [2, 10]). In a nested cross-

validation, the training set for each fold is used in a new cross

validation experiment to set the optimal parameters for that

fold. This reduces the bias due to parameter optimization.

When using the full training set, the optimal parameters

were: dPCA = 22, dLDA = 17 and dPPCA = 8. These

values are included as a reference for the optimality range.

Classification performance. To assess the classification

performance of our approach, we used a nested 10-fold

cross validation as described before and we carried out a

comparison with the LBP method [5] and with KDE [8]

using the optimal parameters described in their paper. Both

methods employ a kNN classifier that does not provide

posterior probability estimates for the classifier assignments.

In our method, we used a Maximum a Posterior (MAP)

criteria to compute the confusion matrix. The assignments

were done at different confidence levels (25%,50%,75% and

90%) given by the upper threshold on the MAP probability,

i.e. EPPCA75% uses those test samples that were assigned a

posterior probability greater than 0.75. Precision, sensitivity

and specificity are shown in Table I. We can see how our

method is competitive with LBP and KDE at a confidence

level of 25%, i.e when all the samples are used to compute

the confusion matrix. Our method improves its accuracy

when a higher confidence level is used, reflecting the im-

portant information that the posterior probability conveys.

Full lung emphysema classification. For a more exhaus-

tive evaluation of our approach we computed a full lung

classification in subjects with different patterns of disease.

For a given CT slice, we applied our approach to each voxel

and computed the class membership probabilities for each

emphysema type. Fig. 3 shows the probability maps for each

emphysema pattern for three subjects. It is worth noting

how paraseptal is mostly present in late stages diseases

while mild centrilobular is present for the mild stages.

Paraseptal is confined to the pleural region as it should be

expected by the histopathology of this disease. The normal

smoker lung shows moderate level (mid probabilities) of mild

centrilobular disease (CL1) that might suggest the impact of

smoking in the lung parenchyma even when emphysema has

not been fully manifested.

IV. DISCUSSION AND CONCLUSIONS

In this paper we present a new approach to quantify

different emphysema patterns, based on a optimal embed-

ded PPCA. Our approach to the emphysema classification

problem is novel in that we capture the underlying data
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Method Precision Sensitivity (Recall) Specificity Total mean(± std)

NL PS PL CL1 CL2 CL3 NL PS PL CL1 CL2 CL3 NL PS PL CL1 CL2 CL3 Prec. Sens. Spec.

LBP 0.90 0.82 0.75 0.32 0.63 0.48 0.80 0.96 0.74 0.43 0.59 0.47 0.94 0.96 0.96 0.88 0.87 0.90 0.65(±0.22) 0.66(±0.20) 0.92(±0.04)
KDE 0.89 0.85 0.78 0.34 0.64 0.45 0.81 0.97 0.71 0.42 0.58 0.52 0.94 0.96 0.96 0.89 0.88 0.90 0.66(±0.22) 0.67(±0.20) 0.92(±0.04)
EPPCA25% 0.76 0.95 0.82 0.52 0.46 0.51 0.84 0.76 0.70 0.51 0.59 0.45 0.87 0.99 0.97 0.91 0.83 0.90 0.67(±0.20) 0.64(±0.15) 0.91(±0.06)
EPPCA50% 0.77 0.95 0.83 0.52 0.48 0.50 0.85 0.76 0.71 0.51 0.60 0.47 0.87 0.99 0.97 0.91 0.85 0.90 0.68(±0.20) 0.65(±0.15) 0.92(±0.05)
EPPCA75% 0.83 0.98 0.88 0.52 0.50 0.47 0.90 0.79 0.74 0.64 0.58 0.47 0.91 0.99 0.98 0.93 0.88 0.91 0.70(±0.22) 0.69(±0.15) 0.93(±0.04)
EPPCA90% 0.80 0.99 0.92 0.60 0.56 0.43 0.93 0.81 0.77 0.73 0.61 0.54 0.92 0.99 0.98 0.95 0.92 0.92 0.72(±0.22)0.73(±0.14)0.95(±0.03)

TABLE I

CLASSIFICATION PERFORMANCE METRICS DERIVED FROM THE CONFUSION MATRIX. OUR METHOD (EPPCA) CLASSIFIES

ACCORDING TO A MAP CRITERIA USING DIFFERENT CONFIDENCE LEVELS AND IS COMPARED WITH LBP [5] AND KDE [8].

CT P(Normal) P(Parasep.) P(Panlob.) P(CL1) P(CL2) P(CL3)
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Fig. 3. Class membership Posterior Probability maps for three subjects with different disease severity: normal smoker (top), moderate
disease (middle) and severe disease (bottom). As disease progresses, the posterior probability increases in the moderate and severe
centrilobular classes (CL1 and CL2) and the panlobular class. It is important to note that the paraseptal posterior probability only shows
signal in the pleural interface as it should be expected.

manifold for each pattern (or class) in a probabilistic fashion

using a supervised embedding technique based on LDA. The

embedded space in which the probabilistic data model is

learnt is computed by means of a generalized LDA that

is trained for each tissue type to maximize the inter-class

covariance between that emphysema type and the rest of

types. Our method shows a performance that is comparable

to current techniques.

The need for a initial dimensionality reduction step based

on PCA is twofold. First, when the dimensionality of the

data is bigger than the number of samples, the within-

class covariance matrix Jk is likely to be singular. Also,

we have noticed that this step is necessary to achieve a

balance between the discriminative power of LDA and the

generalization of the model when projecting new samples.

Although in this paper we have used a linear dimensionality

reduction approach, more general non-linear dimensionality

reduction methods could also be explored and applied.

The posterior probability information provided by this

method can be used in multiple ways. Certainties about the

most likely labels can be provided to guide the emphysema

quantification stage. Additionally, advanced method based on

Markov chain models can be used to relax the probability

assignments taking into account priors about disease progres-

sion between stages and spatial relationships of disease.
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