
  

 

Abstract— We present a prototype of a fully automated 

scoring system for chest radiographs (CXRs) in cystic fibrosis.  

The system was used to analyze real, clinical CXR data, to 

estimate the Shwachman-Kulczycki score for the image.  

Images were resampled and normalized to a standard size and 

intensity level, then segmented with a patch-based nearest-

neighbor mapping algorithm.  Texture features were calculated 

regionally and globally, using Tamura features, local binary 

patterns (LBP), gray-level co-occurrence matrix and Gabor 

filtering.  Feature selection was guided by current 

understanding of the disease process, in particular the 

reorganization and thickening of airways.  Combinations of 

these features were used as inputs for support vector machine 

(SVM) learning to classify each CXR, and evaluated using two-

fold cross-validation for agreement with clinician scoring.  The 

final computed score for each image was compared with the 

score assigned by a physician.  Using this prototype system, we 

analyzed 139 CXRs from an Australian pediatric cystic fibrosis 

registry, for which texture directionality showed greatest 

discriminating power.  Computed scores agreed with clinician 

scores in 75% of cases, and up to 90% of cases in 

discriminating severe disease from mild disease, similar to the 

level of human interobserver agreement for this dataset. 

I. INTRODUCTION 

Cystic fibrosis is one of the most common life-threatening 
genetic disorders worldwide, affecting up to 1 in 2500 people 
born in the highest-risk populations [1].  This prevalence 
corresponds to a total frequency of 1 in 25 of recessive alleles 
which encode defective chloride ion channels in epithelial 
cells.  The disease causes considerable morbidity and 
mortality, affecting multiple organs and ultimately with an 
average life expectancy at birth of close to 40 years despite 
ongoing medical care [2]. 

Although cystic fibrosis is characterized by the formation 
of cysts and fibrotic scar tissue within the pancreas, the most 
severe consequence of the disease is its impact on lungs, 
where impaired chloride transport leads to thick mucus 
production and inability to clear these secretions from the 
lungs.  Bacteria proliferate in the favorable environment, 
establishing a sequence of chronic infection with frequent 
acute exacerbations [3]. 

The course of disease in lung follows a typical course, 
with progressive inflammatory thickening of the airways and 
destruction of alveoli.  Early changes most commonly affect 
the upper regions of the lung before becoming apparent 
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elsewhere.  Subsequently, airways become dilated, and this 
together with trapping of mucus leads to airflow obstruction.  
Later thickening of airways and vessels tends to progress 
from central to peripheral regions.  Destruction of lung 
architecture can also increase the resistance of pulmonary 
blood circulation, leading to pulmonary hypertension and 
consequently cardiac failure. 

Clinicians assess the severity of disease with a 
combination of measures including patient symptoms, 
physical examination, pulmonary function tests, sputum 
culture and radiological imaging.  These assessments are 
used in documenting disease progression, guiding 
interventions, evaluating the response to treatment, and 
predicting mortality.  Substantial effort has been devoted to 
comparing the different measures of disease severity, in 
terms of their predictive value and correlation with other 
measures [4, 5, 6]. 

Plain chest radiographs (CXRs) are a significant 
component of the assessment of cystic fibrosis in children, 
and several different scoring systems exist to quantify the 
degree of abnormality seen.  Different systems are better-
established in each of three major regions with relatively high 
prevalence: Shwachman-Kulczycki scoring in Australia [7], 
Chrispin-Norman scoring in Europe, and Brasfield 
(Birmingham) and Wisconsin scoring in North America.  All 
scoring systems refer to the visible lung changes associated 
with disease progression, albeit with slight differences in 
focus.  In particular, clinicians look for signs of airflow 
obstruction (expanded shape of the chest cavity), bronchial 
and vascular thickening (linear markings), nodules and cysts, 
and gross regional abnormalities. 

Shwachman-Kulczycki scoring classifies CXRs into five 
categories, from 25 to 5 in steps of 5, in order of increasing 
severity.  Table I describes the CXR findings for each score, 
as initially proposed by Shwachman and Kulczycki.  A 
numerical scoring system for CXRs with defined features of 
interest is a particularly attractive target for automation, but 
work to date in this area has been very limited.  Scoring of 
CXRs for cystic fibrosis patients is still performed entirely by 
clinicians.  An automated scoring system would provide 
clinicians with an objective measure of the CXR changes. 

In this study, we examine the use of a segmentation 
algorithm to identify lung fields, from which we extract 
textural features proposed by Tamura, local binary patterns 
(LBP), gray-level co-occurrence matrix (GLCM) features, 
and Gabor filter outputs.  We then combine these features to 
classify CXR images with a final score of 10, 15 or 20, and 
evaluate the overall performance of the automated system in 
terms of its agreement with the scores given by clinicians.  
Scores of 5 and 25 were grouped with 10 and 20 respectively, 
as too few (only 3 of 139) cases were assigned such scores. 
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TABLE I.  SHWACHMAN-KULCZYCKI X-RAY SCORING 

Points Findings 

25 Clear lung fields. 

20 
Minimal accentuation of bronchovascular markings; early 
emphysema. 

15 
Mild emphysema with patchy atelectasis; increased 

bronchovascular markings. 

10 
Moderate emphysema; widespread areas of atelectasis with 

superimposed areas of infection; minimal bronchial ectasia. 

5 
Extensive changes with pulmonary obstructive phernomena 
and infection; lobar atelectasis and bronchiectasis. 

II. MATERIAL AND METHODS 

A. Acquisition of CXR Data 

Patients with cystic fibrosis were identified from an 
Australian pediatric cystic fibrosis registry. Patients undergo 
yearly reviews, which include a scoring CXR.  Prior to 2009, 
CXR images were taken with different protocols and stored 
in several different formats, rendering them too variable for 
our analysis.  Of 279 patients, 139 (aged 2 to 16) had 
undergone a sufficiently recent pediatric scoring CXR study 
which was available for analysis.  The most recent study was 
selected for each patient, with the corresponding score 
documented in its report at the time.  A clinician reviewed the 
final 139 images for technical problems that were likely to 
impact the analysis; none were excluded on this basis though 
note was made of considerable variation in patient 
positioning and beam penetration.  As part of this review, the 
same clinician scored the CXRs independently, allowing the 
measurement of interobserver agreement for this dataset.  
The clinician manually segmented the lung fields in each 
images at its original size, by tracing lung outlines and 
thereby defining lung masks comprised of every pixel within 
the outlines. 

B. Preprocessing 

The CXR images were resampled and intensity-
normalized for both segmentation and feature analysis.  For 
automated segmentation, original images (ranging from 721 
× 696 to 1131 × 951 pixels) were downsampled to 256 × 256 
pixels using nearest-pixel interpolation.  Intensity 
normalization was performed by histogram stretching, 
mapping the 25th and 75th centiles to intensities of 0.25 and 
0.75 respectively.  Manually segmented lung masks were also 
downsampled to 256 × 256 pixels by the nearest-pixel 
method.  For texture analysis, original images were 

downsampled to 512 × 512 pixels using linear interpolation. 

C. Automated Segmentation 

Automated segmentation of each image was performed 
and evaluated as a two-fold cross-validation, using a patch-
based nearest-neighbor mapping algorithm (Figure 1), which 
used the manual segmentation of images in the other fold as 
reference maps. 

In each 256 × 256 image, 16 × 16 pixel patches were 
extracted at horizontal and vertical intervals of 8 pixels.  Each 
such target patch was then compared to nearby (within 3 
intervals) patches in other images.  The distance between 
each pair of patches was computed as the Pythagorean sum of 
all corresponding pixel value distances: 

 d
2
(L, M) = x,y (Lx,y – Mx,y)

2
 (1) 

where L and M are the patches being compared, and x and 
y are the coordinate offsets within each patch. 

Segmentation of each target patch was then determined 
by pixel-wise voting between its 11 nearest neighbors, 
relying on the assumption that patches of similar appearance 
and location are likely to have similar segmentation.  For 
each target patch, its 11 nearest neighbors (selected as a 
balance between voting accuracy and computational 
complexity) were aggregated, and pixels which were 
manually segmented as lung in a majority of these, would be 
segmented as lung in the target patch.  Similarly, pixels 
mostly segmented as background in the reference patches 
would be considered background in the target patch. 

D. Texture Analysis and Scoring 

Lung fields were divided into 4 regions corresponding to 
left and right upper and lower zones, a partitioning used in 
the Chrispin-Norman scoring system [8].  Lungs were 
divided into upper and lower halves by area in pixels.  
Textures within each region, and across the image overall, 
were analyzed using Tamura features [9], LBP [10], GLCM 
properties [11] and Gabor filters [12]. 

Tamura features of coarseness, directionality and contrast 
were computed for each 32 × 32 pixel block within the 
corresponding lung masks, and aggregated for each region.  
These features correlate well with visually perceptible 
differences on CXR (Figure 2).  A separate LBP histogram 
and GLCM was computed for each region.  GLCM features 
exhibit some correlation with similar Tamura features, 

 
Figure 1.  Example of lung segmentation, on the image with the median overlap.  From left to right: downsampled and normalized chest radiograph image; 

manually segmented mask; aggregated votes; final machine segmentation. 
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although they have fallen somewhat out of favor in 
comparison to LBP.  LBP provides some advantages in being 
relatively intensity and contrast invariant, making it robust in 
the face of changes in beam penetration.  Gabor filtering was 
performed in 4 directions at 3 scales over each entire 
normalized 512 × 512 pixel image, with the filter response 
averaged for each region.  As with Tamura features, these 
filters would be expected to identify coarseness and 
directionality, including the specific direction of markings in 
each lung region. 

The output vectors of each of these methods were 
concatenated across regions, then used individually and in 
combination as inputs for a SVM learning model [13].  The 
performance of the classification using SVM was evaluated 
using two-fold cross-validation, across the entire dataset, and 
again using only the subset of images (total 84) with scores 
of 10-or-below (severe) and 20-or-above (mild).  
Performance was compared with the interobserver agreement 
for clinicians on the same data. 

III. RESULTS AND DISCUSSION 

A.  Automated Segmentation 

The performance of automated segmentation was 
validated using overlap, 

  = TP / (TP + FP + FN), (2) 

where true positive (TP) is the correctly segmented lung 
area, false positive (FP) is the actual background area 
classified as lung, and false negative (FN) is the actual lung 
area classified as background. 

The median overlap between automated segmentation and 
manual segmentation was 0.939, with 25th and 75th centiles 
at 0.921 and 0.950, respectively.  This performance is 
comparable to other previously proposed methods of 
automated segmentation and close to the interobserver 
overlap between human observers [14].  The authors of this 

previous study, which dealt with images of good technical 
quality and few gross abnormalities, discussed the limitations 
of manual segmentation fairly extensively in their report. 

In contrast, patients with moderate or severe CF often 
manifest large variations in CXR appearance, on a variety of 
scales (including cystic changes on a smaller scale, 
consolidation or collapse on a larger scale, and overall 
morphological changes to the thoracic wall).  Furthermore, 
although variation between adults is already considerable, the 
variation across the developmental period from 2 to 16 years 
can be expected to be far greater. 

Despite these challenges, patch-based mapping 
maintained a high level of performance, demonstrating its 
robustness for this application.  A similar approach could 
conceivably be applied to segmentation or identification of 
other features on any radiograph of a standard body region, 
including the heart, or air-fluid levels on abdominal x-ray, or 
even tissues on volumetric imaging. 

The patch-based mapping method encountered certain 
difficulties also reported previously [14], most commonly the 
inclusion of a stomach bubble as part of the left lung field.  
This remains a problem for any similar method that does not 
explicitly specify shape information. 

Computation time, using a C++ implementation on 2.26 
GHz Intel Core i5 and 4 GB RAM, was 30 seconds per image 
for segmentation with a reference set of 70 images. 

B.  Texture Analysis and Scoring 

The vast majority of CXRs (136 of 139) had clinician 
assigned scores between 10 and 20.  This is the typical 
distribution of scores in the CF population.  Scores outside 
this range were grouped with the closest score within the 
range, giving the three classifications 10 (severe), 15 
(moderate) and 20 (mild).  Clinician interobserver agreement 
was 0.70 across all three classifications, and 0.95 when only 
severe and mild groups were considered. 

 
Figure 2.  Texture analysis.  From left to right: comparison of lung texture on chest radiographs between severe disease (score 10, far left) showing 

disorganised vascular and bronchial changes; and mild disease (score 20) with normal vascular appearance;  local binary pattern image for lung field with 
mild disease; and Gabor filtered image (far right) for lung field with mild disease showing strong response in the lower half corresponding to vessels 

running diagonally, and confounding signal from rib tips on the left edge. 
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Total image directionality provided the best machine 
classification performance, at 0.75 for three classifications 
and 0.90 for severe-mild discrimination.  Introducing 
coarseness, and contrast, alone or in combination, did not 
appreciably affect this result. 

Directionality compared very favorably to all other 
textural features (Table II), notwithstanding the increased 
computational cost incurred in calculating the GLCM or 
Gabor filtering the image.  All features demonstrated 
markedly higher performance in severe-mild discrimination, 
compared to classification of the entire dataset. 

This performance was comparable to the agreement 
between human observers for this dataset, as well as the 
median in historical studies [15].  Nevertheless, it appears 
that scoring of CXRs in disease is a more difficult task than 
either lung segmentation or identifying gross patterns of 
disease. 

Part of this difficulty can be ascribed to the subtlety of 
changes along the spectrum of disease, which even human 
observers are frequently unable to distinguish if presented 
with small blocks of CXR images in isolation.  A patient with 
a moderate overall score could have localized severe changes 
interspersed with lung tissue of relatively normal appearance.  
For this reason, the average textural features seem to be a 
better measure than the values for individual blocks.  Indeed, 
it has been shown that even 2

nd
 order texture characteristics 

may be insufficient to describe the visible differences [16]. 

Further complicating the task is the fact that disease 
severity follows a normal, rather than multimodal, 
distribution.  Existing scoring systems are more qualitative 
than quantitative in nature, and in this way the classification 
of images into score-labeled groups is a somewhat artificial 
distinction.  The difficulty in discriminating CXRs in the 
middle range of severity is borne out by the markedly 
improved performance when the task is transformed from a 
three-way classification problem to a two-way classification 
problem (“severe” or “mild” only). 

TABLE II.  AGREEMENT WITH CLINICIAN-ASSIGNED SCORE FOR EACH 

FEATURE INPUT SET CONSIDERED 

Feature Inputs 

Agreement, for 

classification with 

scores 10, 15, 20 

Agreement, for 

classification as 

severe / mild only 

total image directionality 0.75 0.90 

Tamura 0.75 0.86 

clinician observer 0.70 0.95 

LBP + Tamura 0.66 0.85 

(all computed features) 0.66 0.83 

LBP 0.60 0.86 

LBP+GLCM 0.60 0.83 

LBP+Gabor 0.56 0.85 

Gabor+GLCM 0.53 0.64 

Gabor 0.51 0.76 

GLCM 0.46 0.64 

CONCLUSION 

We have introduced a new fully automated scoring 
system for chest radiographs (CXRs) in cystic fibrosis.  The 
system uses automated segmentation and analysis of texture 
features, to achieve overall agreement of up to 75% with 
clinician scores.  In distinguishing severe disease from mild 
disease, the system achieves performance of above 85%, and 
up to 90% using a measure of image directionality. 

This prototype system offers several opportunities for 
further development, including the use of multiscale patch-
based mapping segmentation, clustering of patches, the use of 
new and higher-order texture features, contextual features, 
and alternative machine learning algorithms.  Future work 
could potentially correlate image features with other clinical 
measures of disease severity such as symptoms and signs, 
functional capacity, and pulmonary function tests. 
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