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Abstract—We investigate the use of discriminative feature 

extractors in tandem configuration with generative EEG 

classification system. Existing studies on dynamic EEG 

classification typically use hidden Markov models (HMMs) 

which lack discriminative capability. In this paper, a linear and a 

non-linear classifier are discriminatively trained to produce 

complementary input features to the conventional HMM system. 

Two sets of tandem features are derived from linear 

discriminant analysis (LDA) projection output and multilayer 

perceptron (MLP) class-posterior probability, before appended 

to the standard autoregressive (AR) features. Evaluation on a 

two-class motor-imagery classification task shows that both the 

proposed tandem features yield consistent gains over the AR 

baseline, resulting in significant relative improvement of 6.2% 

and 11.2% for the LDA and MLP features respectively. We also 

explore portability of these features across different subjects. 

 

 Index Terms- Artificial neural network-hidden Markov 

models, EEG classification, brain-computer-interface (BCI). 

 

I. INTRODUCTION 

A brain-computer interface (BCI) is a communication 
system which translates specific brain activity, typically 
measured by scalp-recorded electroencephalogram (EEG) 
signals into output commands. In standard EEG-based BCI 
system, the EEG pattern represented by compact feature 
vector is identified automatically using a pattern classifier to 
the associated class of mental state. Various classification 
methods have been used in BCI research. Common 
approaches are discriminative classifiers which use 
discriminant decision hyperplanes directly estimated to 
maximize the separability between classes. Discrimination of 
EEG using simple linear discriminant analysis (LDA) [1] and 
nonlinear classifier such as artificial neural networks (ANNs) 
[2]-[3] and support vector machine (SVM) [4] show good 
classification results. However, these classifiers are prone to 
over-fitting and have poor generalization. Improving 
generalization capabilities by incorporating regularization, 
however, introduces additional parameters to be selected 
empirically.  

Instead of using hard decision boundary, the alternative  
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generative classifiers choose the class model, typically 
probabilistic, that most likely generates the sample, which 
gives better generalization to the test-set. Hidden Markov 
model (HMM), a dynamic generative model, has been applied 
in BCI research [5] to better describe the temporal changes of 
EEG features which static classifiers such as NNs cannot 
naturally model, e.g. spectral pattern of event-related 
(de)synchronization (ERD, ERS). However, the generative 
models trained by maximizing the likelihood of in-class data, 
does not guarantee discrimination against out-of-class data. 
The classification performance by these methods, however, is 
still far from satisfactory when fewer channels are used [6]. 
This may be due to the highly non-stationarity of the EEG 
signals typically in poor signal-to-noise (SNR) condition, 
which renders finding optimal decision hyperplanes difficult if 
not impossible. 

To improve the discrimination of HMM classifier, [7] 
developed a hybrid ANN-HMM framework using 
discriminatively trained ANNs to replace the conventional 
Gaussian mixture models (GMMs) to generate the posterior 
probabilities of HMM states, while maintaining the 
underlying Markov structure for temporal modeling. 
Extension using pre-trained deep neural networks [8] gives 
significantly better performance than HMM-GMM-based 
system in large-vocabulary speech recognition task. Other 
solution involves discriminative training of HMMs [9] by 
modifying the estimation objective function to be 
discriminative. However, both approaches are 
computationally expensive and require substantial 
modifications on the well-established HMM-GMM 
framework for which many effective techniques such 
adaptation have been developed. 

Recent work uses the so-called tandem approach firstly 
introduced by [10], in which the class-posterior probability 
outputs of an ANN classifier are used as additional input 
features to the conventional HMM-GMM recognizer. These 
features usually undergo further transformation (such as 
log-transform and principle component analysis (PCA)) to 
match the Gaussian modeling assumptions before being 
augmented to the standard feature set. The main advantage of 
this approach is that the ANNs can provide discriminative 
features as complementary to the generative classifiers, and 
consume less training effort than the discriminative training of 
HMMs. Besides, ANN can take multiple frames of feature 
vectors which enable wider context modeling. This approach 
has been widely used for speech recognition based on the 
phone-posterior features derived from multilayer perceptrons 
(MLPs), and shows impressive error reduction, consistently in 
wide variety of tasks [11]-[12]. Besides, such features are 
shown to be portable across different domain and language, 
based on assumption that they share certain similar phonetic  
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contexts [12]. Specifically, the MLPs can be trained from data 
from other domain to generate tandem features for in-domain 
data. The out-of-domain (OOD) MLP features can give 
comparable to better results than the features trained on 
in-domain data. There are no or limited studies using tandem 
features for biomedical signal classification other than speech. 

This paper proposes the use of discriminative features in 
tandem to improve the HMM-based classification of 
single-trial EEG. The effectiveness of the MLP features for 
speech is due to the model’s complexity to learn non-linear 
separability, and the availability of large dataset to train it 
reliably. However, for BCI, this advantage of using complex 
model is limited by small amount of EEG data available. LDA 
is simple, has less parameters to train and robust to overfitting 
[13]. Besides, the commonly used LDA is only slightly 
outperformed by the nonlinear methods on EEG classification 
[4]. We further propose LDA-based features on EEG for BCI. 
Thus, two sets of tandem features are extracted from the linear 
and non-linear discriminative classifiers respectively: 
projection output features of LDA and posterior features 
derived from MLP. We use short-time autoregressive (AR) 
parameters as baseline features to train these discriminative 
tandem feature extractors at frame basis, which are then 
appended with the generated tandem features. The back-end 
classifier uses HMM with GMM observation density trained 
using Viterbi algorithm. We compare the LDA- and 
MLP-based features on two-class motor-imagery 
classification using dataset IIIa from BCI Competition III. We 
investigate subject-specific and average tandem features 
derived from the MLP trained from data of one subjects and 
all subjects respectively. We also address the portability of 
tandem features across subjects. 

II. TANDEM FEATURES FOR EEG CLASSIFICATION 

Fig. 1 shows the proposed tandem framework for EEG 
classification, where two discriminative classifiers are trained 
to extract additional input features to the conventional HMM 
classifier. We focus on two-class classification in this study. 
The EEG signal undergoes standard feature extraction to 
generate sequence of AR feature vectors estimated from 
short-time segments. We derive two kinds of features from the 
outputs of a typical linear and a non-linear static EEG 
classifier trained on the AR features at frame level. 

A) LDA projection features: These features are derived as 
the projection output of a two-class LDA decision function 
given an input feature vector x [14] 
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where w is projection weight vector and b is the bias value. 

iμ and iΣ are the mean vector and covariance matrix for class 

i. This output is an un-calibrated projected value that is not 
probabilistic, but can be used for discrimination. The output 
can be mapped to class-posterior probability using a fitted 
sigmoid function, as performed on SVM outputs [15]. The 
input to the LDA can be context window of successive frames 
of feature vectors. 

B) MLP posterior features: These features are derived from 
the class-posteriors estimated by MLP; here, a standard 
feed-forward network with single hidden layer is used. The 
network output is a vector of posterior probabilities, each 
element associated with each class to be identified [10] (in our 
case, 2 for two-class classification). However, to match the 
1-dimensionanl LDA features, only one output is used, with 
the training target set to 1 for one class and 0 for the other. The 
network is trained using the variable learning-rate gradient 
descent algorithm. 

These discriminative features are then concatenated with 
the standard AR features. However, both the augmented 
feature vectors are highly correlated and non-Gaussian, and 
hence not suitable for modeling by GMMs with diagonal 
covariance. Thus, the augmented features are Gaussianized by 
taking their logarithms, and decorrelated using single PCA 
transform with further dimensionality reduction to retain only 
the significant components [10]-[12]. Applying transform on 
the augmented features including the baseline AR parameters 
rather than on the tandem features alone as in [10]-[12], is due 
to that the AR features used here have not been Gaussianized 
and decorrelated implicitly as the Mel-frequency cepstral 
coefficients (MFCCs), the baseline features for speech do in 
[10]-[12]. These transformed features are then fed to the 
HMM-GMM classification system trained with standard 
maximum-likelihood (ML) estimation. 

III. EXPERIMENTAL RESULTS 

We investigate the performance of the tandem features on 
single-trial EEG-based motor imagery classification using 
dataset IIIa, a subset of BCI Competition III dataset [16]. The 
task is classification of four-class cued motor imagery EEG 
(left hand, right hand, foot or tongue movements). The  
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Figure 1.   Block diagram of the proposed tandem feature extraction for EEG classification. 
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TABLE I.  NUMBER OF TRAINING AND TEST TRIALS FOR EACH SUBJECT. 

 

TABLE II.  CLASSIFICATION RESULTS IN ACCURACY (%) USING AR 

BASELINE, LDA AND MLP TANDEM FEATURES. 

Feature set 
Subject 

Mean 
k3 k6 l1 

AR baseline 59.21 61.08 52.86 57.72 

SS LDA tandem 61.84 68.47 53.66 61.32 

SD LDA tandem + PCA 56.58 66.19 48.86 57.21 

SS MLP tandem 64.47 66.48 61.56 64.17 

SS MLP tandem + PCA 57.89 61.65 56.41 58.65 

AS MLP tandem 59.21 65.63 61.21 62.02 

AS MLP tandem + PCA 60.53 63.92 53.78 59.41 

 

 

database consists of three subjects each recorded 60-channel 
EEG data with sampling frequency 250 Hz, with 60 trials per 
class. We focus on two-class classification of left and right 
hand movement, using only two unipolar channels i.e. the C3 
and C4. The numbers of training and test trials for each subject 
are shown in Table I. Use of very few channels along with 
small amount of training data per subject make the 
classification task very challenging. 

A subject-dependent HMM-GMM system is built for each 
subject using Viterbi training algorithm. Single-trial HMMs 
of 2 and 3 states with Gaussian mixture components per state 
varied from 1, 2, 4, and 8, are trained and the optimal model is 
selected based on the best classification result. The EEG 
segments during motor-imagery from 3 to 8s are used for 
analysis. The baseline features used to represent the spectral 
changes of ERD during motor imagery, are 12-dimensional 
short-time AR features (6 coefficients from each channel) 
computed over each window of 250ms without overlapping. 
Single frame is used as input as we found that use of window 
of frames does not give any performance improvement, which 
may due to that the 250ms window is sufficient to capture the 

 

 

 

 

 

 

 

 

 

 

 

wide contexts of ERD changes.  

We extract the LDA features using the linear discriminant 
function (1) estimated by Equations (2) and (3). Fig. 2 shows 
the averaged time courses of LDA features (plotted as 
function of frames) extracted from the left-hand and 
right-hand motor imagery EEG data of the train-set for each 
subject. Generally, subject k3 shows the clearest hemispheric 
differentiation, followed by k6 and l1. The best frame 
discrimination is observed at earlier period for subject k3 and 
l1 (4 to 5s) and later for k6 (6 to 7s), where prominent ERDs 
are expected to occur. These best discriminating regions are 
consistent with where the best frame classification results 
using LDA are achieved on the same dataset [6]. The good 
separability of the left- and right-hand features obtained, is 
expected to provide additional discriminative information for 
improving the subsequent classification. The MLP features 
are extracted by a network with a hidden layer of 15 units and 
a single non-linear output unit (a structure of 12 15 1  ), 

trained with variable learning rates with maximum 500 
training iterations as stopping criterion. The single 
discriminative feature is appended to the AR features, giving 
augmented vector of 13 dimensions, further reduced to 10 
after PCA transform. Additional experiments show that the 
performance decreases when the log-transform is applied. For 
classification, the increase of computational time to calculate 
these tandem features was insignificant. 

Table II shows the classification results for the baseline AR 

features, and after concatenation with LDA and MLP tandem 

features with and without PCA transform. For MLP features, 

we also compare networks trained on a subject-specific (SS) 

basis and over all subjects (AS). It can be seen that both 

tandem features without PCA, significantly outperform the 

baseline AR features for all subjects, giving relative averaged 

accuracy improvement of 6.2% and 11.2% for LDA and MLP 

features respectively. This also indicates that the more 

complex non-linear model can generate better discriminative 

features. Applying PCA transform actually degrades the 

performance of tandem features but still improve over the 

baseline generally. Possible reason is that the discriminative 

power of the single tandem feature might loss after averaged 

projection along with the more dominant high-dimensional 

baseline AR features. All subjects are hypothesized to exhibit  

Subject 
# of training trials # of test trials 

Left hand Right hand Left hand Right hand 

k3 36 37 38 38 

k6 21 26 22 16 

l1 20 20 23 19 

(a) (b) (c) 

Figure 2.   Averaged time courses of LDA tandem features extracted from the left-hand (       ) and right-hand (       ) motor imagery EEG data from 

the training set for subject k3 (a), k6 (b) and l1 (c). The cue onset is presented at 3 s. The plots are obtained by ensemble averaging over trials. 
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TABLE III.  CROSS-SUBJECT CLASSIFICATION RESULTS USING 

OUT-OF-SUBJECT MLP FEATURES TRAINED ON OTHER SUBJECTS. 

Feature set 
Subject 

Mean 
k3 k6 l1 

AR baseline 59.21 61.08 52.86 57.72 

In-subject MLP tandem 64.47 66.48 61.56 64.17 

MLP tandem trained on k3 - 62.78 51.14  

MLP tandem trained on k6 55.26 - 53.66  

MLP tandem trained on l1 56.58 58.24 -  

Mean 55.92 60.51 52.40 56.28 

In-subject MLP tandem + PCA 57.89 61.65 56.41 58.65 

MLP tandem trained on k3 + PCA - 67.05 55.95  

MLP tandem trained on k6 + PCA 56.58 - 55.95  

MLP tandem trained on l1 + PCA 51.32 65.06 -  

Mean 53.95 66.06 55.95 58.65 

 

 

some similar subject-independent pattern of ERD despite 
great inter-subject variability. The average MLP tandem 
despite being trained on all subjects outperform the baseline 
with slightly poorer performance over the SS model, 
suggesting its use for subject-independent classification in 
BCI research. 

To further evaluate the subject-independency of the MLP 
and hence the portability of the generated tandem features 
across subject, we perform cross-subject classification, where 
MLPs trained on one subject for tandem feature extraction for 
other subjects. The results are shown in Table III. It is clearly 
seen that the posterior features trained on out-of-subject data 
are able to match the performance of in-subject trained 
features. While the all-subject trained MLP can offer gains 
over the baseline, the posterior features trained solely on 
single other subject are slightly underperformed. This 
indicates that these cross-subject MLPs fail to generalize as 
the average models, due to the large inter-subject variability. 
Use of PCA transform performs slightly better than the 
baseline, possibly because of the imposed feature selection 
and decorrelation. 

IV. CONCLUSION 

In this paper, we have presented a tandem approach for 
single-trial EEG classification by using two discriminative 
classifiers as additional feature extractors for the conventional 
generative HMM-GMM classification system. Our results on 
two-class motor-imagery EEG classification show that both 
the proposed LDA and MLP tandem features provide 
substantial gains when augmented to the baseline AR features 
consistently for each subject, with the best relative accuracy 
improvement of 11.2% by the non-linear MLPs. This suggests 
that the tandem features can bring discriminative information 
complementary to the baseline features. The posterior features 
from MLP trained on all subjects, an average model which are 
shared across subject, are able to improve the baseline, 
suggesting some degree of subject-independency of the 
features. However, MLP features trained solely on a single 
subject fail to generalize to other subjects. Future work will 
investigate cross-task portability of the tandem features  

trained on multiple subjects, for BCI research. Besides, the 
performance evaluation will be extended using more complex 
four-class classification task or other databases with more 
subjects. 
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