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Abstract— A common approach for high accuracy sensor 

fusion based on 9D inertial measurement unit data is Kalman 

filtering. State of the art floating-point filter algorithms differ 

in their computational complexity nevertheless, real-time oper-

ation on a low-power microcontroller at high sampling rates is 

not possible. This work presents algorithmic modifications to 

reduce the computational demands of a two-step minimum 

order Kalman filter. Furthermore, the required bit-width of a 

fixed-point filter version is explored.  For evaluation real-world 

data captured using an Xsens MTx inertial sensor is used. 

Changes in computational latency and orientation estimation 

accuracy due to the proposed algorithmic modifications and 

fixed-point number representation are evaluated in detail on a 

variety of processing platforms enabling on-board processing 

on wearable sensor platforms. 

I. INTRODUCTION 

Inertial measurement units (IMU) usually consist of triads 
of gyroscopes, accelerometers and magnetometers. In order 
to determine orientation based on these sensors common 
algorithmic approaches are either gyroscope integration, 
vector observation, complementary filters or Kalman filtering 
[1]. Modern highly integrated, small-sized, and lightweight 
[2], [3] IMUs, commonly comprise triaxial inertial sensors 
and a microcontroller (MCU) for interfacing the sensors and 
communication with the data processing platform. In wireless 
IMUs the orientation estimation is performed on the host 
processing platform due to performance limitations of the 
low-power MCUs. 

On-board computation of the orientation is desired to 
lower the transmission latency by reducing the amount of 
data to be transmitted. Processed orientation data is 
represented by a four element quaternion instead of the RAW 
data comprising three data elements for each of the three 
tri-axial sensors (e.g. gyroscope, accelerometer and 
magnetometer). The transmission data rate is often a limiting 
factor in motion capturing using multiple IMUs. 

A sensor network comprising multiple wearable IMUs 
allows motion capturing in rehabilitation sessions. An 
application relying on the movement data acquired is 
movement sonification. Thereby, an audio feedback 
dependent on the captured movement [4] is generated. Recent 
research showed a remarkable benefit from sonification of 
movements for patients in stroke rehabilitation [5]. Wearable 
IMUs fixed at the patient’s body are used to capture complex 
upper body movements. Based on a connected rigid chain 
body model, parameters like angles between body segments, 
positions or velocities can be computed. 

 
 

Important criteria for the usage of inertial sensors in 
rehabilitation sessions are long term usability in home based 
environments. Therefore, gyroscope drift and susceptibility to 
ferromagnetic materials should not affect motion capturing. 
Compensation of magnetic disturbance is a highly 
computational demanding algorithmic problem. Therefore, 
the algorithms cannot be performed in real-time on low 
power hardware platforms. 

Based on a previous study [6] evaluating computational 
latency and orientation estimation accuracy of eight inertial 
sensor fusion algorithms the Kalman filter according to Lee 
and Park 2009 [7] was chosen for sensor fusion, as this algo-
rithm constitutes the best tradeoff between orientation esti-
mation accuracy and latency considering the movement soni-
fication application demands. This two stage Kalman filter 
comprises a four element state vector and accelerometer and 
magnetometer data preprocessing utilizing the O2OQ (opti-
mal two-observation quaternion estimation method) algo-
rithm further reducing the computational demands compared 
to a unique Kalman filter with larger state vector dimensions. 
The structure of the algorithm is shown in Figure 1.  

In this work algorithmic modifications reducing the 
computational demands while preserving the orientation esti-
mation accuracy for the Kalman filter algorithm are proposed 
and evaluated. Second, a fixed-point version of the sensor 
fusion algorithm is presented and orientation estimation de-
gradation and the platform dependent influence on the execu-
tion time is evaluated. This analysis allows to choose the 
preferred implementation for each hardware architecture. 
Orientation estimation accuracy is evaluated based on data-
sets captured using a Xsens MTx [3] inertial sensor and a 
Qualisys optical capturing system as golden reference. 

The paper is organized as follows: Section II presents 
related work highlighting wireless, wearable IMUs and 
sensor fusion algorithms. Section III provides details about 
the Kalman filter optimization and the generation of a fixed-
point version. Section IV highlights the accuracy and latency 
evaluation results of the proposed algorithmic modifications. 
Conclusions are presented in section V. 
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Figure 1.  Minimum order two step Kalman filter structure 
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II. RELATED WORK 

In literature there are multiple algorithms for inertial 
sensor data fusion [7], [8], [9]. It is common to benchmark 
those algorithms using artificial datasets. Therefore, a fair 
comparison of different approaches is hampered. Real-world 
data-sets used in this work were proposed in [6] and comprise 
a long-term and a magnetic disturbance data-set. 

Complementary filter and Kalman filter algorithms for 
inertial sensor fusion were evaluated based on a captured 
walking trial in [1]. Since this work further optimized vector 
observation techniques [9], Kalman filters with minimized 
computational costs [7] and magnetic disturbance compensa-
tion [10] have been developed. For this reason, the computa-
tional latency and orientation estimation accuracy of eight 
algorithms was evaluated in a previous study [6]. 

Complementary filters were not considered for sensor 
fusion as all of the Kalman filters evaluated in [6] provide 
considerably better results in contrast to the algorithms 
benchmarked in [1]. Complementary filters fuse orientation 
estimates based on high-pass filtered gyroscope data and low 
pass filtered accelerometer data. According to [1] these filters 
provide only slightly improved results compared to vector 
observation methods while increasing computational costs. 

A simplified Kalman filter algorithm is proposed in [11] 
using pre-computed a priori and a posteriori error covariance 
matrices. This reduces the computational demands by about 
25 %. However, the authors do not consider an additional 
magnetometer, as well as testing multi axis movements. 

In [12] a two stage Kalman with reduced computational 
complexity is presented. The preprocessing relies on the 
QUEST / FQA algorithm, which shows a worse accuracy 
compared to the O2OQ algorithm used in this work. A 
custom ASIP was designed to speed up computations and 
allow real-time operation at a 1 kHz sampling rate. The paper 
focuses in ASIP design and lacks an orientation estimation 
accuracy analysis and a detailed fixed-point analysis. 

III. KALMAN FILTER MODIFICATION 

To reduce the computational demands of the chosen 
Kalman filter algorithm two strategies are presented. First of 
all, algorithmic modifications are implemented to reduce the 
number of operations required for the computation of a 
Kalman filter update. Applying predefined values for several 
matrices is enabled due prior knowledge of constant sensor 
and process noise characteristic. Second, a fixed-point ver-
sion of the algorithm is designed to substitute the high laten-
cy floating-point operations by lower latency fixed-point 
operations and thus achieve a speedup on certain processors. 

A.  Predefinition of Error Covariance Matrices 

The authors in [11], [12] propose the reduction of 
computational complexity by using pre-computed a posteriori 
and a priori error covariance matrices on their proposed 
Kalman filter. It has been shown that this modification has 
negligible influence on the orientation estimation accuracy. 

This concept is applied to the Kalman filter according to 
Lee and Park [7]. The influence on the filter structure is 
shown in Figure 2. , highlighting the reduction of required 
computation steps. 
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Figure 2.  Proposed modified two step Kalman filter structure 

Using pre-computed matrices results in less required 
operations, enabled by knowledge about constant sensor noi-
se characteristics. The Kalman gain matrix also becomes in-
dependent from the actual input data and can be pre-compu-
ted due to the pre-computed error covariance matrices The 
pre-computation of the Kalman gain matrix achieves a high 
reduction of the computational demands, as this eliminates 
the computation of a 4x4 matrix inverse in each filter step. 

A comparison of floating-point operations required for a 
single Kalman filter step of the modified Kalman filter 
compared to the initial version is given in TABLE I. The 
modification significantly reduces the number of operations. 

TABLE I.  NUMBER OF OPERATIONS PER FILTER STEP 

Operation ‘+’, ‘-‘ ‘*’ ‘/’ Arc Cos 

O2OQ 
 147 197 31 1 

Kalman 

Filter 

Original 579 524 46 0 

Modified 60 37 20 0 

B. Transformation from floating-point to fixed-point 

To determine required minimal total bit-width and the 
number of integer and fraction bits for each Kalman filter 
variable a template based C++ framework, described and 
applied in [13], is used. The framework enables code re-
usage at data-type level by abstracting the data-type. 

For analysis using this framework the floating-point data 
type (e.g. float or double) has to be replaced by the 
frameworks template based data type. Setting the template 
data-type to float or double results in a floating-point 
reference implementation. For fixed-point analysis the 
template data-type has to be replaced by a hybrid floating-
point or integer type (e.g. int32_t, int64_t) and parameters 
specifying total bit-width and fixed-point position. 

An iterative design space exploration is performed, 
varying total bit-width and fixed-point position. An 
additional data-type implemented in the framework allows 
accuracy assessment compared to floating-point and overflow 
detection at bit-level. 
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Figure 3.  Orientation estimation variation due to algorithmic modification 

demonstrating negligible effect of utilizing predefined matrices 

IV. EVALUATION OF KALMAN FILTER MODIFICATIONS  

Orientation estimation accuracy of the original and modi-
fied Kalman filter was determined based on a 24,000 samples 
arbitrary rotation data-set [6]. The data-set comprises Xsens 
MTx [3] inertial sensor data and Qualisys optical motion 
tracking system data as golden reference. The MTx sensor 
and the optical system are both sampled at 120 Hz. Within 
the data-set the inertial sensor is rotated about +/- 90° along 
each axis in between the sensor stayed in the starting posi-
tion. The data-set is also used to determine the effect of bit-
width reduction in evaluating the fixed-point Kalman filter. 

A.  Evaluation of Kalman filter modification 

To evaluate the influence of the Kalman filter 
modification the estimation of the original and the modified 
filter algorithm are compared to the golden reference data-set. 

The differences in the computed orientation estimation 
are shown in Figure 3. The difference of the orientation esti-
mation is 0.08 °RMS, 0.01 °RMS and 0.19 °RMS (roll, pitch, 
and yaw) compared to the original algorithm. Providing an 
absolute accuracy of 2.36 °RMS, 2.50 °RMS and 6.43 °RMS 
(roll, pitch, and yaw) compared to the golden reference. 
Therefore, the influence on accuracy due to the algorithmic 
modification is negligible while highly reducing the number 
of operations required. Evaluating a further data-set from [6] 
involving partial external magnetic disturbance to show data 
independence performance the gap is 0.19 °RMS, 0.09 °RMS 
and 0.37 °RMS (roll, pitch, and yaw). 

B.  Influence of total bit-width on estimation accuracy 

First of all, the required bit-width of a hybrid floating-
point version of the Kalman filter is evaluated, as a starting 
point for the later fixed-point analysis. This number represen-
tation is suitable for ASIP designs, while on other architec-
tures the number of operations required highly increases due 
to the additional value dependent shift operations. 

Second, the relation between total bit-width and 
orientation estimation accuracy of the fixed-point Kalman 
filter algorithm is analyzed. The optimal bit-position of the 
static fixed-point is determined via test runs using the 
arbitrary rotation reference data-set [6]. Due to the non 
optimal bit-width utilization accuracy will decrease compared 
to a floating or hybrid floating-point number representation. 

TABLE II. shows the relation between bit-width and ori-
entation estimation accuracy. A detailed analysis of the filter 
structure shows a high impact of the state propagation step 
accuracy on the overall Kalman filter performance. There-
fore, the influence of a larger bit-width for the computation of 
this step is evaluated. According to TABLE II. this approach 
enables a further reduction of the bit-width for all remaining 
operations. When further reducing the bit-width, based on the 
performed evaluation, spikes in the orientation estimation 
occur making the results unusable for further processing. 

TABLE II.  RELATION BETWEEN BIT WIDTH AND ORIENTATION 

ERROR USING HYBRID FLOATING-POINT NUMBER REPRESENTATION 

Kalman 

filter 

version 

Bit-width Orientation estimation error 

State 

prediction 

Other 

filter 

steps 

Roll 

/ °RMS 

Pitch 

/ °RMS 

Yaw 

/ °RMS 

Median 

/ °RMS 

Original 
30 30 1.7 2.3 2.0 2.0 

52 26 1.9 2.0 2.2 2.0 

Modified 
27 27 1.3 3.0 3.2 3.9 

32 19 1.5 2.3 3.2 2.3 

TABLE III. presents the relation between bit-width and 
orientation estimation accuracy for the Kalman filter using a 
fixed-point number representation. In contrast to the hybrid 
floating-point version there is a larger influence of the state 
prediction step on the overall orientation estimation accuracy. 
Therefore, an equal scaling of the bit-width for all filter steps 
results in an inacceptable orientation error. The results show 
that the modified Kalman filter enables a further reduced bit-
width while achieving more reliable orientation estimation, 
by avoiding the fault-prone matrix inverse computation due 
to the static Kalman gain matrix. On programmable platforms 
multiples of the register-width is used for representing the 
filter variables. 

TABLE III.  RELATION BETWEEN BIT WIDTH AND ORIENTATION 

ERROR USING FIXED-POINT NUMBER REPRESENTATION 

Kalman 

filter 

version 

Bit-width Orientation estimation error 

State 

prediction 

Other 

filter 

steps 

Roll 

/ °RMS 

Pitch 

/ °RMS 

Yaw 

/ °RMS 

Median 

/ °RMS 

Original 62 30 4.7 3.2 16.4 8.1 

Modified 51 30 2.0 3.8 6.9 4.2 

The relation between °RMS estimation error and total bit-
width of the state estimation computation for the fixed-point 
filter version is shown in Figure 4. The bit-width for all other 
computation steps is set to 30 bit. Spikes occurring in the 
orientation are masked due to mean value computation. 

 
Figure 4.  Orientation estimation degradation due to bit-widht scaling 

Minimum bit-width without 

spikes (see table III) 
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C.  Hardware platform dependent latency analysis of the 

number representation formats 

The number representation (e.g. floating-point, hybrid 
floating-point or fixed-point) achieving lowest latency is plat-
form dependent. Therefore, an analysis considering a wide-
spread number of hardware platforms is performed to figure 
out the best implementation for each architecture. Factors 
influencing the optimal number representation are the proces-
sors data-width, the presence of a floating-point unit, and the 
performance of the floating-point operations emulation. 

Hardware platforms considered in the evaluation are: 
- ATMEGA1281:  8-bit low cost MCU @ 8 MHz 
- AT32UC3A0128:  32-bit MCU @ 64 MHz 
- Nios II (fast core): Altera soft-core processor with  

FPU @ 50 MHz 
- ARM 1176:    32-bit RISC core with  

coprocessor FPU @ 700 MHz 
- ARM Cortex A8:  32-bit RISC core with fixed- 

point and floating-point SIMD 
unit @ 1.0 GHz 

- Core i5 760:    64-bit general purpose  
processor with floating point 
SIMD unit enabling vector 
operations @ 2.8 GHz 

A detailed comparison of the of the Kalman filter executi-

on times on the different processor cores is presented in 

TABLE IV. The platform dependent lowest computational 

latency is highlighted. The bit-width of fixed-point version is 

set to the required multiples of the processors data-width. 

TABLE IV.  ORIGINAL AND MODIFIED KALMAN FILTER LATENCY 

Execution time on the 

processing core in µs 
C++ 

reference 

C hybrid 

floating-

point 

C fixed-

point 

Original / Modified Kalman filter latency / [µs] 

Core i5 760 
1.05 / 

0.65 

41.22 / 

18.77 

5.13 / 

1.41 

ARM Cortex A8 
43.74 / 

21.77 

238.32 / 

142.02 

31.46 / 

8.41 

ARM 1176 
22.43 / 

8.66 

550.56 / 

339.39 

136.86 / 

16.29 

AT32UC3A0128a 
1,899.81 / 

853.6 

8,046.92 / 

6,927.23 

464.08 / 

140.47 

ATMEGA 1281a 
24,061.50 / 

9,430.25 

314,919.88 / 

284,640.50 

88,002.38 / 

31,483.63 

Nios II (fast core) 
21,662.00 / 

8,400.00 

8,338.00 / 

5,365.00 

2,189.00 / 

682.00 

a. Reference algorithm written in C due to compiler 

V. CONCLUSIONS 

Reduced computational demands of the Kalman filter due 

to predefined Kalman gain and a priori and a posteriori error 

covariance matrices achieves an accurate orientation estima-

tion based on the Kalman filter according to [7]. Dependent 

on the computation platform and the number representation 

a speedup between 1.1 and 8.4 is achieved. The evaluation 

points out the optimal implementation for each architecture. 

Influencing aspects are the latency of floating-point 

operations, the latency of emulated floating-point operations 

and the latency of shift operations due to the transformation 

into the fixed-point number representation. Dependent on 

the hardware platform a fixed-point or a floating-point 

version of the algorithm achieves lowest latency. 

A negligible accuracy degradation caused by the Kalman 

filter modification is shown using a reference data-set with a 

duration of 3.3 minutes and a sampling rate of 120 Hz. 

The bit-width reduction of the hybrid floating-point and 

fixed-point filter version is mainly limited by spikes in the 

computed orientation estimation corrupting a further 

processing of the orientation data. Therefore, the results 

presented in TABLE II. and TABLE III. are the bit-width 

limits regarding an orientation estimation without spikes. 
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