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Abstract—Although great strides have been achieved in
computer-aided diagnosis (CAD) research, a major remaining
problem is the ability to perform well under the presence of
significant noise. In this work, we propose a mechanism to find
instances of potential interest in time series for further analysis.
Adaptive Kalman filters are employed in parallel among different
feature axes. Lung sounds recorded in noisy conditions are
used as an example application, with spectro-temporal feature
extraction to capture the complex variabilities in sound. We
demonstrate that both disease indicators and distortion events
can be detected, reducing long time series signals into a sparse
set of relevant events.

I. INTRODUCTION

Computer-aided diagnosis (CAD) research focuses on the
detection of disease and its precursors. While this is an
important goal in computational processing of medical signals,
studies are generally based on relatively clean data with no
detrimental amount of noise. Such an approach may not always
extend its results to real data in practical applications. Al-
though some imaging based areas of CAD have shown results
significant enough to be now standard procedure in many
hospitals [1]; diagnosis on many types of temporal signals
remains an ongoing investigation. The standard approach in
the literature is to extract features from the data and use
a clustering algorithm to divide the data according to the
likelihood and types of disease [2]–[7]. However, many of
the employed machine learning algorithms are not sufficiently
robust to noise and results may be significantly affected in the
presence of distortions.

In this work, we tackle this issue by switching the CAD
focus from diagnosis to detection of events of interest. The
strategy is to identify occurrences of abnormalities in temporal
signals. Once an event is detected, it can be examined by a
physician or put through further computational processing to
determine what it is. In the first case, the proposed approach
is desirable because it turns a very long signal into a sparse
and easily manageable sequence of events; while still keeping
the physician in control of decision making. In the latter case,
the mechanism provides a guided search method: Rather than
blindly searching the entire signal for signs of disease, the
problem is reduced to classifying what kind of abnormal event
has occurred. We adopt a similar framework to one used to
model auditory deviance detection processes in the brain [8],
and apply this deviance detection scheme to find abnormalities
in auscultation signals applied to lung sounds. The proposed
scheme employs recursive tracking of temporal patterns in

the signal using Kalman filtering, a popular choice in many
medical applications [9]. Kalman filtering is fast, efficient,
applicable to real-time tracking and robust to recording noise.
Importantly, unlike other sophisticated artificial intelligence
algorithms, Kalman filters are easy to interpret and adapt to
the desired application.

The outline of this paper is as follows. First, we introduce
the abnormality detection framework, which is the main com-
ponent that can be applied to a variety of biosignals. Then,
we explain the data considered in this work and the selection
of features appropriate for the data. Last, the ability of our
model to match expert labeling of the data is demonstrated.

II. METHODS

A. Detection scheme

The proposed scheme starts with mapping of the biosignal
onto an appropriately chosen feature space. The choice of this
space depends on the nature of the quantity of interest, and
incorporate prior information about the modality under study.
This issue shall be discussed in the following section. Once
the transformation of the signal is achieved, the goal is to
track the evolution of this signal in this new space and detect
deviations from “normal” behavior. Following this concept of
deviance detection, we first define what standard or normal
behavior is, and the acceptable variance around this standard;
in order to determine “abnormal” behavior. Based on this
definition, the recursive scheme iterates through the temporal
signal, predicting at each time instant how the signal should
evolve. Any deviations from this prediction results in an alert
or abnormal event.

The scheme employs tracking based on Kalman filtering.
A Kalman filter is a discrete-time linear dynamical model
with assumed Gaussian noise. It advances recursively through
the signal to predict the value of a state or quantity, along
with error covariance (measure of the estimate accuracy), and
refines the estimate based on measurements of the state. The
underlying process of a Kalman model is given in (1). X is the
state that is being tracked, while Y is the real measurement.
The measurement is inherently a function of the real state
value. Both the state and measurement are perturbed by noise,
respectively w and v. F , and H represent system matrices.

Xt = FtXt−1 + wt

Yt = HtXt + vt
(1)
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Details of the implementation are presented in [8] but are
summarized here. The system matrices are assumed to be
constant (2). Given Q, the system noise covariance and R,
measurement covariance, Kt, the Kalman gain, can be found.
P̂t is the state prediction error covariance matrix providing a
measure of accurate fit. X̂t represents the a posteriori estimate
of the state Xt. Putting these together, we have the final
recursive system that will hereafter be referred only as the
“Kalman”, presented in (3). Intermediate values such as a
priori state estimate and innovation have been incorporated
into the equations for conciseness.

Ft =

[
1 1
0 1

]
Ht =

[
1 0

]
(2)

At the beginning of each Kalman, the initial values of the
system are calculated from a short time segment, selected 1
second in the application. The variances of the noise parame-
ters are arbitrarily set based on prior information of the feature
at hand. Here we use σw = 0.001, and σv = 0.06.

Kt = (FP̂FT +Q)HT (H(FP̂FT +Q)HT +R)−1

X̂t = Ft−1X̂t−1 +Kt(Yt −HFX̂t−1

P̂t = (I −KtH)(FP̂t−1F
T +Q)

(3)

The detection scheme assigns one set of Kalmans to each
feature, as shown in Fig.1. After finding the standard of the
incoming sound feature within the initial buffer, a separate
Kalman is allocated to each stream. At each consecutive time
instance, the incoming value in that feature is compared with
every prediction in the Kalman set of that feature. If no filter
has predicted this value, the time is recorded to be of interest,
and a new stream is initialized so that the value may form a
new stream if it occurs again not long after. If the value does
match one of the predictions, the matching Kalman is updated
to new estimates. Finally, a memory cleanup exists to remove
the tracking of the streams that have not been updated for a
long time (8 seconds in our implementation).

The decision of whether an input value fits into the pre-
diction of a Kalman depends on the measurement innovation
covariance, a metric of how well the predictions are matching
the input. This is a direct function of the estimated error
covariance, which is updated at every time step. Consequently,
if the innovation is always small, the tolerance for fitting a
Kalman will get smaller over time. But if the input signal is
very noisy, the tolerance will grow. The validation gate used
here is an adaptation from [10] with γ = 4 resulting in about
97% of probability mass inside validation gate.

|Y − X̂n| <=
√
γ(P̂ (1) + σ2

v) (4)

This mechanism produces a spike train as output, indicating
locations of interest. The amplitude of each spike is the
distance of the real value at that time to the validation gate. For
multiple spikes at the same time location, only the maximum
spike is recorded. The last processing step filters spikes with
a threshold depending on which feature they originated from.

Fig. 1. The full detection model. Features extracted from the biosignal are
put through the mechanism in parallel. Standard detection divides the feature
into streams from which deviants are detected. New streams may be created,
and unused ones erased as necessary.

B. Data

The data we used to demonstrate our framework is of
paediatric auscultations recorded in a noisy environment. Lung
sounds provide a marker of lung pathologies or airway ob-
struction. The base of the sound signal is a cyclic pattern of
the airflow during breathing. If there is existence of a disease,
anomalous patterns are superimposed onto the periodic breath-
ing cycle. Two of the most studied patterns belong to stationary
wheezes and transient crackles, which are markers of specific
pathologies. These patterns are not trivially described within
a signal processing framework. Characteristically, lung sounds
span 50-2500Hz, wheezes are slightly higher frequency of
about 100-2500Hz, and crackles span about 100-500Hz.

Previous studies have mostly dealt with recordings from
adults in a controlled environment, resulting in relatively clean
data where noise was not considered a significant effect;
however, this might not always be the case in practice. The
data used in this work was obtained from outpatient paedi-
atric clinics in Kathmandu, Nepal and Lima, Peru [11]. The
data contains artifacts from background chatter, child crying,
and environment noise. Acquisition was made from a digital
recording stethoscope connected to an MP3 player, sampled
at 44100Hz. For the Nepal data, annotations were made by
two physicians at 15 second segments, labeling the segment
as normal, crackle or wheeze (with no specification of exact
timing). For the Peru data, annotations were available for every
event other than regular breathing, labeled by type of event in
addition to onset and offset times.

C. Feature extraction

Due to the acoustic nature of our dataset, we have selected
spectro-temporal features in our application of the detection
scheme. It should be noted again that the detection scheme can
be used on many different types of features; the ones presented
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here are merely an appropriate selection for the given task.
We aim to capture the subtle variances in the sound signals

with a thorough analysis of their spectro-temporal properties.
Mimicking the information processing of the early auditory
system [12], the signal is bandpass filtered and put through a
mechanism including high-pass filtering, non-linear compres-
sion, and low-pass filtering, in simulation of inner hair cells.
The final output is the integration of a lateral inhibitory net-
work (see [13] for implementation details of the spectrogram).
Our spectrogram is computed with time windows of length
8ms with no overlap and 128 channels. In our experiments, we
use data with a sampling rate of 8kHz, which gives us center
frequencies ranging logarithmically between approximately
100Hz and 4kHz. Every channel of the spectrogram is treated
as a separate feature in deviance detection.

Bandwidth information is computed from the spectrogram
by filtering it with cortical bandpass filters, mimicking the
response of neurons at the mammal auditory cortex, which are
tuned to a range of spectral resolution and temporal modula-
tion [14]. The characteristic ripple frequencies to compute the
bandwidth feature are selected logarithmically between 2−2

and 24 cycles per octave. Rate information is computed from
the spectrogram by frequency binning of overlapping windows
across time. In this implementation, power is summed for 10
bins among 200ms windows.

Lastly, we include envelope information of the original
feature waveform. Loudness difference can be indicative of
wheezes (which typically appear louder) or other interesting
information in the signal. The envelope is computed by taking
the magnitude of the Hilbert transform of the data, and running
a Butterworth filter of cutoff 60Hz and order 6 through it.

There is two types of normalization during feature extrac-
tion. First, before the time-frequency analysis, the sound signal
is normalized by its standard deviance at every 1s segment.
Second, after the features are extracted, they are processed to
reduce sampling artifacts. With our Kalman trackers, we want
to see the overall level change rather than point-to-point level
change, which is highly dependent on the original sampling
rate and further complicated with resampling. To alleviate
this problem, we use a non-overlapping windowing scheme
where at each window we assign the mean of the window to
every sample. Window length is arbitrarily selected to be 0.8s.
Following, the features are downsampled with a rate of 1/8.
The resulting feature streams have the necessary information
represented in a significantly smaller number of samples than
the original sound waveform.

Thresholds used for filtering spikes at the output of the de-
viance mechanism are as follows. Envelope: 0.5; Spectrogram:
0.5, Bandwidth: 0.6, Rate: 0.55. Thresholds are application
specific and determined based on results from the Nepal
dataset. Same threshold values are used for the Peru dataset.

III. RESULTS

For each of the two datasets at hand, we extract the clearly
labelled trials to test the model on. For the Nepal dataset, there
are 24 trials of varying length. Annotation is available at 15

TABLE I
DETECTION RATES ON THE NEPAL DATASET ON A SEGMENT BASIS

# Segment # Miss Detection
Total “normal” 38 11 71.05%
Wheeze 36 0 100.00%
Crackle 29 6 79.31%
Wheeze & crackle 15 0 100.00%
Total “abnormal” 80 6 92.50%
Total 118 17 85.59%

TABLE II
DETECTION RATES ON THE PERU DATASET ON AN EVENT BASIS

# Event # Miss Detection
Stethoscope 88 4 95.45%
Verbal 122 8 93.44%
Child movement 78 10 87.12%
General noise 30 3 90.00%
Child crying 30 3 90.00%
Ambient sounds 14 2 85.71%
Total “normal” 362 30 91.71%
Wheezing 41 0 100.00%
Rhonchi,crackle,ad.sound 14 2 85.71%
Total “abnormal” 55 2 96.36%
Total 417 32 92.33%

second increments. There is no information about where in the
15 second segment the abnormal event occurs. Four possible
labels are assigned: Normal, crackle, wheeze, both crackle and
wheeze. Our task is not the differentiation of diseases, but
merely the signs of abnormality. Thus, we group the latter
three labels into one label, “abnormal”. There are a total of
38 “normal” and 80 “abnormal” segments throughout the 24
trials.

We run each trial separately, so the system is initialized only
at the beginning of the trial, and consecutive segments of the
same trial are fed into the already running system. If there is
a spike that is higher than the threshold in any feature during
the duration of the annotated event, the segment is treated as
“abnormal”. If there is no spike in any feature, it is treated as
“normal”. Calculation of performance is done on a segment
basis to match the annotations. Results are presented in Table I.

The Peru dataset has a more detailed labeling scheme in
which environmental sounds are also annotated, reflecting the
increased complexity of sounds represented in the recordings.
Trials with complete annotation and no cutoffs in recording
are selected for testing the model. There are 47 such trials
in total, each at about 1m20s in length. Six of these trials
are from patients with bronchiolitis, and five are from patients
with asthma. There are six different types of noise distinctly
noted: Stethoscope movement, verbal communication, patient
movement, noise, child crying, and ambient noise such as
background chatter or television. For abnormal lung sounds,
there are four classes: Wheezes, crackles, adventitious sounds,
rhonchi. Sounds except wheeze are grouped due to their low
number of occurrence. Time annotations are of beginning and
ending times of one of the events. Events may be overlapping.
The number of events in one trial varies between 2-33.

Again, each trial is run separately. The output of spikes
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are compared in time with the time annotations of their
corresponding trial. If there is a spike during the time of an
event, that event is marked as detected. If there is no spike in
any feature during an annotated event, the event is marked as
missed. In the case of overlapping events, when there is a spike
during their time range, it is counted as a hit for both events;
as our goal is simply to drive attention to time instances.
Spikes that occur but do not correspond to any annotated
event are marked as an error. Results are presented in Table II.
Additionally, there are a total of 61 spikes unaccounted for,
averaging to 1.3 spike per trial.

We can see from the results that there is a high rate of
detection for relevant events in both experiments. In both sets
of data, we find the wheezing with 100% accuracy, whereas
the performance drops for crackles. This is not unexpected due
to wheezes being more conspicuous from a signal processing
perspective, as they are louder and last longer; while crackles
have the disadvantage of being overpowered in both energy
and time. Although the Nepal dataset has less noise than
the Peru dataset, the noise is not explicitly annotated. There
are some segments where there is stethoscope movement and
loudness artifacts, which are apparent upon listening. However,
we have kept the annotation of the physician as a reference.
The low classification rate of eventless segment classification
reflects this discrepancy between apparent signal problems and
annotation. To summarize, we are not teaching the system
that the expert labeled trials are ground truth and comparing
other trials to that; we are rather providing an unsupervised
detection scheme that will find any signal abnormality, and
this is reflected in the results of both datasets.

In the Peru dataset results it is much more clear that the
results of Nepal dataset is due to annotation discrepancies.
Since signal abnormalities are labeled more thoroughly, we
are able to show that our model indeed finds any type of
noise in the signal: Be it abnormal lung sounds, or abnormal
environmental artifacts. The amount of false alarms is low,
corroborating our claim that most of the deviants our model
finds are in fact events of interest.

IV. CONCLUSION

We have proposed a method of abnormality detection in
biosignals following an alternate interpretation of computer-
aided diagnosis. Rather than the traditional scheme of making
decisions on whether a given trial of medical test is indicative
of disease or not; we follow the approach of marking points
of interests among time for further processing, either by a
physician or computationally. We have aimed at capturing a
more sparse representation of the biosignal by reducing it to
only events of potential interest. This approach allows us to
make more versatile decisions by being prepared for any type
of distortions and artifacts from recording noise.

Results on noisy datasets were presented, illustrating the
complications of making signal-based diagnosis in the pres-
ence of significant noise. The results indicate that we can
successfully reduce the signal into its significant events. Our
results might lead to a shift in computer-aided diagnosis

methodology, especially in one dimensional temporal signals,
where learning on small segments is complicated with issues
such as lack of knowledge on whether the event exists in
part or in whole in the segment. The processing we have
demonstrated takes care of such problems by pinpointing the
precise location of the abnormal event in the signal.

Further, although our presented results are on lung sounds,
our mechanism has wide application due to its lack of depen-
dence on the constraints of a specific modality. A large set
of features is supported by the model, inviting application on
different types of biosignals.
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