
An extended multivariate autoregressive framework for EEG-based

information flow analysis of a brain network

Imali T. Hettiarachchi1, Shady Mohamed1, Luke Nyhof1 and Saeid Nahavandi1

Abstract— Recently effective connectivity studies have gained
significant attention among the neuroscience community as
Electroencephalography (EEG) data with a high time reso-
lution can give us a wider understanding of the information
flow within the brain. Among other tools used in effective
connectivity analysis Granger Causality (GC) has found a
prominent place. The GC analysis, based on strictly causal
multivariate autoregressive (MVAR) models does not account
for the instantaneous interactions among the sources. If instan-
taneous interactions are present, GC based on strictly causal
MVAR will lead to erroneous conclusions on the underlying
information flow. Thus, the work presented in this paper applies
an extended MVAR (eMVAR) model that accounts for the zero
lag interactions. We propose a constrained adaptive Kalman
filter (CAKF) approach for the eMVAR model identification
and demonstrate that this approach performs better than the
short time windowing-based adaptive estimation when applied
to information flow analysis.

I. INTRODUCTION

Electroencephalography (EEG) data collected non-

invasively using specialised modern hardware can produce

high resolution information on underlying brain function.

However, the volume conduction effect of the human

head results in a blurred picture of this function. Thus we

need special mathematical tools for functional segregation

(localization) and integration (connectivity) analysis.

Functional integration analysis is based on determining

functional and effective connectivity, which gives us an

insight to the coordinated activation among localized brain

areas.

Among other popular approaches for effective connectivity

analysis such as, Dynamic Causal Modeling [1] and Struc-

tural Equation Modeling, Multivariate Autoregressive Model-

ing (MVAR) has gained a wide number of applications due to

its simplicity. MVAR modeling is derived from the definition

of Granger Causality (GC) [2]. A number of estimators in

the frequency domain have been proposed through MVAR

modeling of the EEG time series [3], which among them

partial directed coherence (PDC)[4] and directed transfer

function (DTF) [5] are used in a vast number of applications.

In a conventional MVAR (cMVAR) model the linear

modeling system does not include instantaneous interactions

between the variables. However, instantaneous interactions

can occur in neural signals [6]. If these instantaneous interac-

tions are present among the variables and not captured by the
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cMVAR model, they will be transferred to the model resid-

uals creating a correlation structure within them [7]. Most

GC-based measures for analysis of the system dynamics rely

on the assumption of uncorrelated model residuals. Thus, if

instantaneous interactions are neglected in the model, the

estimated causal structure by measures such as PDC or DTF

will not reflect the true underlying network structure [8][9].

As a solution for this problem in EEG analysis, the work

in [6] proposed the use of an extended MVAR (eMVAR)

model, which accounts for instantaneous interactions by

including the zero-lag component to the cMVAR model. eM-

VAR model identification is a critical step in estimating the

frequency domain measures. The instantaneous effects cause

lack of identifiability of the eMVAR model coefficients. Us-

ing a priori knowledge available on the temporal order of the

variables under investigation is a viable solution to improve

the identifiability of the model [6][9]. The instantaneous

paths are then defined with imposed constraints, so that a

path exists from i→ j only when i > j with no closed loops

permitted. Using the non-gaussianity of the model residuals

is another option for eMVAR model identification [8].

The work in [6][9] has proposed eMVAR modeling as

a generalised candidate for GC-based connectivity studies.

In this paper we present an extension to their work to be

used in information flow analysis. The short time window

(STW) approach used in their work can be extended to a

overlapping sliding STW approach for the information flow

analysis. Further, we propose a novel Constrained Adaptive

Kalman filter (CAKF) approach for eMVAR model identifi-

cation. Compared to the sliding STW approach, the proposed

CAKF-based identification can resolve the underline struc-

ture better. Both approaches assume that the temporal order

of the variables are known a priori, and thus use the same

model constraints.

This paper is organised as follows. Section 2 introduces the

eMVAR model and Section 3 describes the eMVAR model

based connectivity measures. Section 4 presents the proposed

CAKF technique. Section 5 and 6 discuss the simulated

model and the results of the paper and Section 7 concludes

the paper.

II. THE TIME VARYING EXTENDED MVAR MODEL

The time varying eMVAR model of k signal sources can

be given as,

Y (n) =
P
∑

i=0

Ar(i, n)Y (n− i) + E(n) (1)
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where Y (n) = [y1(n)y2(n) . . . yk(n)]
T , yj denotes the jth

signal source and n = 1, 2, . . . , L denotes a time point. The

superscript T refers to the transpose of a matrix throughout

the paper. L is the total number of time points in the data.

Ar(i, n) is the (k × k) model coefficient matrix at lag i =
0, . . . , P . P is the model order. E(n) = [e1(n), . . . , ek(n)]

T

is a vector of zero mean white noise input with covariance

matrix ΣE . The matrix Ar(0, n) contains the instantaneous

effects.

III. EXTENDED MVAR BASED CONNECTIVITY

MEASURES

The time varying PDC measure [4] associated with the

cMVAR is

PDCij(n, f) =
Bij(n, f)

√

Σkm=1
|Bmj(n, f)|2

(2)

where Bij(n, f) is the (i, j) element of the inverse transfer

matrix, B(n, f) of the frequency domain cMVAR model at

frequency f . The time domain represented of cMVAR is,

Y (n) =
∑P

i=1
Br(i, n)Y (n−i)+W (n), where now Br(i, n)

is the (k×k) model coefficient matrix at lag i of the cMVAR

model. W (n) = [w1(n), . . . , wk(n)]
T is a vector of zero

mean white noise input with covariance matrix ΣW . Here,

B(n, f) =
[

I −
∑P

m=1
Br(m,n)exp (−2πimf)

]

.

In analogy to the cMVAR related PDC measure, the time

varying extended PDC (EPDC) measure [9] associated with

the eMVAR is formulated as

EPDCij(n, f) =
1

σi
Aij(n, f)

√

∑k

m=1

1

σ2
m

|Amj(n, f)|2
(3)

where Aij(n, f) is the (i, j) element of the in-

verse transfer matrix, A(n, f) of the frequency do-

main eMVAR model at frequency f . A(n, f) =
[

I −
∑P

m=0
Ar(m,n)exp (−2πimf)

]

.

The EPDC measure will show significant values at both

the instantaneous and lagged transfer paths. However in

an information flow analysis we are more focused towards

the lagged flow pertaining to the definition of GC. For

this purpose we use the time varying lagged PDC (LPDC)

measure is defined in [9]

LPDCij(n, f) =
1

σi
Āij(n, f)

√

∑k

m=1

1

σ2
m

| ¯Amj(n, f)|2
(4)

where Ā(n, f) =
[

I −
∑P

m=1
Ar(m,n)exp (−2πimf)

]

.

IV. CONSTRAINED ADAPTIVE KALMAN FILTERING

In order to apply a Kalman filtering approach to estimate

the time-varying MVAR coefficients (1) should be repre-

sented in a state space formulation

x(n) = x(n− 1) + V (n)

Y (n) = C(n)x(n) + E(n) (5)

constrained by

Dx(n) = d (6)

where x(n) =







vec[BTr (0, n)]
T

...

vec[BTr (P, n)]
T






is the concatenation

of vectorised Br(i, n) of size (kk(P + 1)× 1) and C(n) =

Ik⊗







Y T (n)
...

Y T (n− P )






is the concatenated matrix of the past

measurements of size k × kk(P + 1). ⊗ is the Kronecker-

product and Ik is the k × k identity matrix.

The vector carrying the model coefficients, x(n) are the

states that has to be estimated. As no a priori knowledge is

available about the states we use the most common approach

of using a random walk model [10]. V (t) is the state noise,

which is a multivariate Gaussian noise with zero mean and

covariance matrix ΣV .

Due to the non stationarity of the EEG signals ΣE
and ΣV will be time varying parameters and with no a

priori knowledge available should be recursively estimated

within the standard Kalman filter iterations. Among the many

different adaptive estimation techniques [11], we update ΣE
and ΣV using

ΣE(n) = αΣE(n− 1) + (1− α)Ỹ Ỹ
T

ΣV (n) = I(1− α)trace(P (n|n))/P (7)

where α is the forgetting factor controlling the adaptation

speed, Ỹ (n) measurement residual and P (n|n) is the a

posteriori estimation error covariance matrix. The value of

α lies in the interval [0, 1] and is chosen to be near to 1 [12].

Additionally we include the state constraints on the state

matrix to reflect the condition of directional influence of

instantaneous connections pertaining to the temporal order

of the time series. This step is in analogy to the Cholesky

decomposition step in the STW identification approach [9],

which naturally sets Br(0, n) to be a zero diagonal lower

triangular matrix. The matrix D is selected such that the

entries of x(n), corresponding to upper diagonal and the

diagonal entries of Br(0, n) is set to zero. Thus the number

of constraints for this application is s = k(k+1)/2, resulting

in a known s × kk(P + 1) constraint matrix D and d is a

known equality matrix, in our application d = zeros(s, 1).
In this paper the constrained estimates x̃(n|n) are esti-

mated by directly projecting the unconstrained state estimates

x̂(n|n) onto the constrained surface [13]. The maximum

probability method gives the constrained estimation as

x̃(n|n) = x̂(n|n)− P (n|n)−1DT (DP (n|n)−1DT )−1

.(Dx̂(n|n)− d). (8)

Here the a priori estimate of the filter recursions is chosen

to be the constrained estimate x̃(n|n) [14]. With an identity

state transition matrix Ik. The Constrained Adaptive Kalman

filter (CAKF) recursions are given by

• Time Update

x̂(n|n− 1) = x̃(n− 1|n− 1)

P (n|n− 1) = P (n− 1|n− 1) + ΣV (n) (9)

Ỹ (n) = Y (n)− C(n)x̂(n|n− 1)

3946



• Measurement Update

ΣE(n) = αΣE(n− 1) + (1− α)Ỹ Ỹ
T

S(n) = C(n)P (n|n− 1)C(n)T

+ΣE(n) (10)

K(n) = P (n|n− 1)C(n)TS(n)−1

x̂(n|n) = x̂(n|n− 1) +K(n)Ỹ (n)

x̃(n|n) = x̂(n|n)− P (n|n)DT

(DP (n|n)DT )−1

.Dx̂(n|n)

P (n|n) = [I −K(n)C(n)]P (n|n− 1)

ΣV (n) = I(1− α)trace(P (n|n))/P

where x̂(n|n− 1), P (n|n− 1) are the a priori state estimate

and the estimation error covariance matrix respectively,K(n)
is the Kalman filter gain and S(n) the residual covariance

matrix.

V. SIMULATION STUDY

A three dimensional eMVAR process of order two with

imposed lagged and instantaneous interactions together with

a time varying parameter is used to investigate the ST

windowing approach and the proposed CAKF approach in

eMVAR based information flow analysis. The process is

generated using the equations:

y1(n) = 0.5y1(n− 1)− 0.7y1(n− 2)

+c12(n)y2(n− 1) + e1(n)

y2(n) = 0.7y2(n− 1)− 0.5y2(n− 2) (11)

+0.2y1(n− 1) + c23(n)y3(n− 1) + e2(n)

y3(n) = 0.8y3(n− 1) + 0.5y1(n) + e3(n)

with

c12(n) =

{

n/L n ≤ L/2
(L− n)/L n > L/2

(12)

and with

c23(n) =

{

0.4 n ≤ 0.7L
0 n > 0.7L

(13)

This is a modified version of the model used in a previous

study [15] to evaluate time varying directed interactions in

EEG data. We modify this model structure by imposing

an instantaneous interaction from y1 → y3. A graphical

representation of the model (11) is given in Fig. 1 in a

directed graph. Ap(i, j) refer to the magnitude of influence

from jth region to the ith region at the pth lag. ei ∼ N(0, 1),
where N(µ, σ2) denotes a normal distribution with mean µ
and variance σ2.

We generate data points L = 10000, however assume

a sampling frequency (Fs) of 256Hz for the purpose of

connectivity measure calculations. This Fs results in the

number of frequency bins used for the LPDC and EPDC

calculations as 128, with a maximum frequency of 128Hz

(= Fs/2). The value of α was set to 0.999 for the CAKF

estimations. The window length (W ) of the STW approach
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Fig. 1. Graphical representation of the Simulated model as a directed graph

was selected as 256 points, in order to fulfill the requirement

of sufficient amount of data.

VI. RESULTS AND DISCUSSION

Fig. 2 to Fig. 5 illustrate the most significant values of the

estimated PDC, LPDC and EPDC after applying a random

permutations surrogate data method. The most significant

values are calculated by setting a 99% level of significance.

Fig. 2 shows the PDC measure based information flow of

the model when a cMVAR model fitted to the simulated

model (11). An unconstrained adaptive Kalman filter (AKF)

is used for the adaptive estimation of ΣV and ΣE . It can be

seen that the PDC measure shows a information flow from

y1 → y3, which is actually an instantaneous interaction and

a flow from y2 → y3, which is a spurious connection. Thus

it can be seen that by using a cMVAR model when zero lag

interactions are present can heavily misinterpret the underline

information flow.

Fig. 3 and Fig. 4 illustrates the estimated LPDC and EPDC

measures using the eMVAR model and the CAKF. It can be

observed that Fig. 3 evidently represents the lagged structure

(y1 → y2, y2 → y1 and y3 → y2) in model (11) and

EPDC contains both the lagged and instantaneous (y1 → y3)

interactions. In contrast to the PDC measure in Fig. 2, the

LPDC in Fig. 3 represents the correct information flow.

Similar to the CAKF approach the STW based LPCD (Fig.

5) measures also resolve the lagged and mixed interactions

fairly well, in comparison to the STW based PDC measure

in Fig. 2.
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Fig. 2. PDC for model using AKF cMVAR
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Fig. 3. LPDC for model using CAKF eMVAR

The STW based LPDC measure illustrated in Fig. 5 has a

poor time frequency resolution compared to Fig. 3 based of

CAKF. Nevertheless, the sudden changes in the time varying

information flow from y3 → y2 is captured accurately when

in both STW and CAKF based LPDC measures. However,

faint spurious information flow patterns can be observed in

Fig. 5 showing the LPDC measure.

Thus, overall the proposed CAKF can be concluded as

a better candidate over STW for eMVAR coefficient estima-

tion. Within the proposed framework, the zero lag coefficient

matrix is constrained to a lower triangular form, which

corresponds to force these effects to be present over pre-

determined directions determined by the order of the time

courses. In real data analysis the estimation would fail if the

actual instantaneous effects are not precisely pre-determined.

Ordering of the source time courses in the temporal order of

source activation is one method to overcome this issue.

VII. CONCLUSION

The paper presents a state space framework for adaptive

estimation of eMVAR model parameters that can be applied

for information flow analysis of non-stationary EEG data.

We discuss an extension to the work presented in [9]. The

main contribution in the paper is to propose an CAKF

algorithm for the estimation of a eMVAR model. While eM-

VAR provides a generalised model for GC-based frequency

domain connectivity analysis in presence of instantaneous

interactions, the proposed CAKF estimation framework im-

proves the usability of the eMVAR model in information

flow studies, offering advantages over the STW approach in

terms of improved image resolution and the occurrence of

spurious patterns compared to the STW approach.
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