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ABSTRACT 
 
Neuron transforms information via a complex interaction 
between its previous states, its intrinsic properties, and the 
synaptic input it receives from other neurons. Inferring 
synaptic input of a neuron only from its membrane potential 
(output) that contains both sub-threshold and action 
potentials can effectively elucidate the information 
processing mechanism of a neuron. The term coined blind 
deconvolution of Hodgkin-Huxley (HH) neuronal model is 
defined, for the first time in this paper, to address the 
problem of reconstructing the hidden dynamics and synaptic 
input of a single neuron modeled by the HH model as well 
as estimating its intrinsic parameters only from single trace 
of noisy membrane potential. The blind deconvolution is 
accomplished via a recursive algorithm whose iterations 
contain running an extended Kalman filtering followed by 
the expectation maximization (EM) algorithm. The accuracy 
and robustness of the proposed algorithm have been 
demonstrated by our simulations. The capability of the 
proposed algorithm makes it particularly useful to 
understand the neural coding mechanism of a neuron. 
 

Index Terms— Hodgkin-Huxley model, Blind 
deconvolution, Kalman filtering, Expectation maximization 
 

1. INTRODUCTION 
 
Neuron, i.e., a specialized cell for receiving, integrating and 
transmitting information, transforms information from the 
synaptic input (received from thousands of other neurons) 
into the membrane potential that includes small (sub-
threshold) and large (action potential) fluctuations [1]. 
Therefore, estimating synaptic inputs of a neuron from its 
output (membrane potential) can improve the level of our 
understanding of information processing mechanism of a 
neuron [2]. There are several works in neuroscience which 
aimed to extract the synaptic input of a neuron (excitatory 
and inhibitory synaptic inputs separately or the sum of 
them) from the sub-threshold membrane potential (see [3] 
and references therein). In addition to the significance of 
synaptic input in neural coding, the dynamics of ion 
channels influence on neural coding properties [1]. The 

recent methods of [2] and [4] are the only works in the 
literature that are not restricted to sub-threshold recordings 
of the membrane potential wherein the Hodgkin-Huxley 
(HH) model is used to represent the behavior of a single 
neuron and Kalman filtering technique is employed to 
estimate both ion channels dynamics and synaptic input. It 
is to be noted that the intrinsic parameters of a neuron are 
known in [2, 4].  
In this paper, we extend the scope of previous works ([2] 
and [4]) by addressing the problem of reconstructing the 
hidden dynamics of ion channels and synaptic input (sum of 
the excitatory and inhibitory) of a single neuron modeled by 
the HH model as well as estimating its intrinsic parameters, 
maximal conductances and statistical parameters (standard 
deviation of channel noise) only from single trace of noisy 
membrane potential. Since the dynamics, synaptic input and 
parameters of the HH neuronal model are unknown, the so 
called blind deconvolution of the HH model (although it is 
not the same as the conventional convolution models) is 
addressed for the first time in this paper. The blind 
deconvolution is accomplished via a novel recursive 
algorithm.  
The organization of this paper is as follows. In Section 2, 
state-space representation of the HH model and the 
assumptions by which our algorithm works are introduced. 
Our recursive algorithm is proposed in Section 3. 
Simulation results are provided in Section 4, and finally in 
Section 5 concluding remarks are given. 
 

2. PROBLEM STATEMENT 
 
In this paper, we are considering the HH neuron model to 
represent the dynamics of a single neuron. This model can 
be stated as follows. 
 
            (1) 
 
 
where (gNa, gK, gL) and (ENa, EK, EL) denote the maximum 
conductances and the reversal potentials of the sodium, 
potassium and leak currents, respectively. Isyn is the total 
synaptic input (excitatory and inhibitory) that a neuron 
receives and Iinj is the intracellularly injected current. m, n 
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and h, which indicate the dynamics of the HH model, can be 
determined by the Langevin equation [5]. 
 
                        (2) 
 
where αq(v) and βq(v) are nonlinear functions of voltage (see 
[4] for details). In view of the limitations of the imaging 
techniques, it is impossible to measure all the necessary 
biophysical variables describing a single neuron model. 
This paper assumes the intercellular electrophysiological 
recordings by which the membrane potential, v (plus noise) 
in (1), is the only measurable variable. The objective of this 
paper is reconstructing the full HH ionic dynamics, {n(t), 
m(t), h(t)}, estimating the unknown parameters, {gNa, gK, 
gL}, and inferring the synaptic input, Isyn(t), using solely 
single trial of membrane potential. This measurement, on 
the other hand, may contain noise from recording 
equipment, i.e., known as observation noise that is modeled 
by the white Gaussian noise [6]. It is to be noted that it is 
not possible to address this problem using only a single 
trace of the membrane potential as the observation, because 
the number of unknowns overwhelm the number of data 
points. To overcome this problem we need to provide some 
a priori knowledge about the unknown variables. In this 
paper, it is assumed that, 1- the reversal potentials (ENa, EK, 
EL) have been already measured experimentally, 2- 
functional form of voltage-dependent ionic inputs, αq(v) and 
βq(v), are known, 3- similar to [2], the smoothness of the 
synaptic input is preserved by a random-walk-type prior and 
4- in consistent with [7], the initial values of the maximum 
conductances are randomly selected from the ±25% 
neighborhood of the true values to ensure the identifiability 
of the HH model. Now, to meet our objective based on 
aforementioned assumptions, we define a state vector x = [v, 
n, m, h, Isyn, gNa, gK, gL]H including the observed state 
variable, v, augmented by unobserved state variables, [n, m, 
h, Isyn], and system parameters, [gNa, gK, gL]. Therefore, a 
state space representation of the HH neuron model can be 
expressed as follows. 
 
 
           (3) 
 
where C=[1,01×7], B=CH, εO (observation noise), εS (system 
noise) and Iinj(t) are mutually independent and uncorrelated. 
εO and εS are modeled by the zero-mean white Gaussian 
noise of variance σ2

O and covariance matrix ΣS = diag([σ2
v, 

σ2
syn, σ2

n, σ2
m, σ2

h, σ2
Na, σ2

K, σ2
L]), respectively. F[x(t)] is the 

time-varying transition matrix that can be easily provided 
from (1) and (2) (see [4, 6] and [8] for details). Let us define 
θ = [σ2

v, σ2
syn, σ2

n, σ2
m, σ2

h, σ2
Na, σ2

K, σ2
L]H as the statistical 

parameters of the HH neuronal model. In the next section, 
we present our proposed recursive algorithm to track 
(estimate) the state vector x and the statistical parameter θ. 
 

3. PROPOSED ALGORITHM 
 
The main idea behind our proposed recursive algorithm is 
illustrated in this section. Fig.1 shows the block diagram of 
this algorithm.  

 
Fig.1. Block diagram of the proposed recursive algorithm. 
 
As can be seen in Fig.1, our recursive algorithm consists of 
five main steps whose descriptions are given as follows. 
The algorithm begins with its initial values, θ0, which can be 
set to very small values 10-6. In step 1, the extended Kalman 
filtering (EKF) is employed to accomplish filtering the 
states x and providing the conditional first and second order 
statistics, E{xt |y0:t} and E{xt xt

 H|y0:t} (see [8] for full 
derivation of EKF for the HH model). Sufficient statistics 
for the EM algorithm, E{xt |y0:T} and E{xt xt

 H|y0:T} over 
whole time, {0:T}, are provided by Kalman smoother, in 
step 2. The new estimation of the statistical parameters, θ̂ , 
is calculated by the EM algorithm, in step 3, as follows.  

 
           (4) 
 
 
 
where Y and X stand for the observation, {y}0:T, and states, 
{x}0:T, over the whole time. In fact, we want to find new 
statistical parameters θ̂  such that to maximize the expected 
joint log likelihood of the observation and the hidden states 
with respect to statistical parameters θ. Expanding (4), we 
can write: 
 
 
           (5) 
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Reminding that, p(yt/xt,θ)=N(yt;Cxt ,σ2
O) and p(xt/xt-

1,θ)=N(xt;F[xt]+BIinj ,ΣS) where N(µ,σ2) stands for the 
normal distribution of mean µ and variance σ2, and taking 
the derivative of (5) with respect to Σ-1

S (=diag(θ)), we can 
calculate the new estimation of the ΣS as follows. 
 
  
 
           (6) 
 
 
 
where,  
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first and second order statistics that have been already 
calculated in the Kalman smoothing step (see [9] for 
details). Then, θ can be easily obtained as the diagonal of 
the S∑̂ . It is to be noted that A(t) in (6) represents the first 
order derivative of the transition matrix F with respect to 
the states, x(t) (see [8] for computing A(t)).  
As our proposed algorithm is recursive, we initialize the 
next iteration in step 4. The algorithm stops when no 
considerable changes occur in two consecutive iterations. It 
is observed in our simulations that the variation of the 
estimated synaptic input, Isyn, is a good candidate as for the 
stopping criterion. Therefore, our algorithm stops when the 
variance of the estimated synaptic input changes in two 
consecutive iterations is less than 5%.  
 

4. SIMULATION RESULTS 
 
Two different types of synaptic input are considered in our 
simulations to verify the accuracy and robustness of our 
proposed algorithm. In the first simulation, the synaptic 
input contains two jumps (see Fig. 2) which do not preserve 
the smoothness assumption we have previously made. The 
second simulation is more realistic wherein the synaptic 
input is generated from Ornstein-Uhlenbeck process 
(colored noise). For each experiment, the accuracy of our 
proposed algorithm in estimating the parameters of the HH 
neuronal model and reconstructing its synaptic input is 
demonstrated. The simulated data is generated by an HH 
model whose specifications are: {ENa=55, EK=-90, EL=-
70}mV, {gNa=32, gK=10, gL=0.1}µS/m2, cM=1µF/cm2 and the rate 
constants of the ion channel state transitions (αq(v) and 
βq(v)) are the same as [10]. A zero mean white noise of 
standard deviation 10 mV is added to the generated 
membrane potential as the observation noise. All the 
simulations were carried out by MATLAB and the HH 
neuron model dynamics are obtained by solving (1) using 
the “ode15” of MATLAB functions with 0.01 ms as the 

integration time step while the membrane potential is 
sampled every 0.1 ms. Figures 2 & 5 show the noisy 
recorded membrane potentials (top) and the true synaptic 
inputs (bottom) for the first and the second simulation, 
respectively. Figures 3 & 6 demonstrate the reconstructed 
versus the true membrane potential (top) and the synaptic 
input (bottom) of each experiment using the proposed 
algorithm. Moreover, Figures 4 & 7 indicate the 
reconstruction of the HH channel dynamics, for each 
experiment. 
 
 
 
 
 
 
 
 
 

 
 
Fig.2. Noisy membrane potential in the first simulation (top) and original 
synaptic input (bottom). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3. Estimated (red dashed line) versus true (black solid) membrane 
potential (top) and synaptic input (bottom). The algorithm stops in the 7th 
iteration. The initial value of θ (for all variables) is 10-6. 
 
 
 
 
 
 
 
 
 
 

 
Fig.4. Estimated (red dash line) versus true (black solid) channel dynamics 
of the HH model. The initial values of n, m, h are zero.  

 
Fig.8 is plotted to show how the parameters of the HH 
model, the maximum conductances in the first experiment, 
converge to their true values. As can be seen from Fig.8, all 
the estimated parameters, gNa, gK and gL are accurately 
converge to their true values.  
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Fig.5. Noisy membrane potential in the second simulation (top) and original 
synaptic input (bottom). The step current, Iinj = 0.06 µA/cm2, 20ms ≤ t ≤ 
150ms, is injected to neuron in this simulation. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.6. Estimated (red dashed line) versus true (black solid) membrane 
potential (top) and synaptic input (bottom). The algorithm stops in the 3th 
iteration. Synaptic input is generate by low pass filtering (0.4/(1-0.9z-1)) the 
white Gaussian noise. The initial value of θ (for all variables) is 10-4. 
 
 
 
 
 
 
 
 
 
 
Fig.7. Estimated (red dash line) versus true (black solid) channel dynamics 
of the HH model. The initial values of n, m, h are zero.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 . Estimated (red dash line) versus true (black olid) parameters of the 
HH model.  
 
As seen in Figures (2-8), the intracellular voltage, v, the 
dynamics of ion channels, {n, m, h}, the synaptic input, Isyn, 

and the intrinsic parameters {gNa, gK, gL}, are all estimated 
with excellent accuracy only from noisy recorded 
membrane voltage using our proposed algorithm. 
 

5. CONCLUSION 
 
A novel recursive algorithm has been proposed, in this 
paper, to address the problem of estimating the unobserved 
dynamics, the synaptic input and the intrinsic parameters of 
the Hodgkin-Huxley neuronal model. The so called blind 
deconvolution of HH neuronal model has been tackled by 
employing an extended Kalman filtering followed by an EM 
algorithm. The robustness and accuracy of this algorithm 
have been validated by two simulations. The corresponding 
promising results imply that the proposed algorithm 
provides a powerful framework for estimating the 
unobserved dynamics and input of a neuron and therefore, 
can better reveal how neurons transform information from 
the synaptic input to the membrane potential. Employing the 
proposed algorithm to real intracellular recordings builds 
our future line of research. 
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